Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis

F. Filandr, D. Kavan, D. Kracher, CVFP. Laurent, R. Ludwig, P. Man, P. Halada

. 2020 ; 10 (2) : . [pub] 20200205

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21012868

Grantová podpora
16-34818L Grantová Agentura České Republiky - International
I 2385-N28 Austrian Science Fund - International
W1224 Austrian Science Fund - International
J-4154 Austrian Science Fund - International
LQ1604 Ministry of Education, Youth and Science - International
CZ.1.05/1.1.00/02.0109 European Regional Development Fund - International
LM2015043 Ministry of Education, Youth and Science - International
SVV260427/2019 Univerzita Karlova v Praze - International

Lytic polysaccharide monooxygenases (LPMOs) are industrially important oxidoreductases employed in lignocellulose saccharification. Using advanced time-resolved mass spectrometric techniques, we elucidated the structural determinants for substrate-mediated stabilization of the fungal LPMO9C from Neurosporacrassa during catalysis. LPMOs require a reduction in the active-site copper for catalytic activity. We show that copper reduction in NcLPMO9C leads to structural rearrangements and compaction around the active site. However, longer exposure to the reducing agent ascorbic acid also initiated an uncoupling reaction of the bound oxygen species, leading to oxidative damage, partial unfolding, and even fragmentation of NcLPMO9C. Interestingly, no changes in the hydrogen/deuterium exchange rate were detected upon incubation of oxidized or reduced LPMO with crystalline cellulose, indicating that the LPMO-substrate interactions are mainly side-chain mediated and neither affect intraprotein hydrogen bonding nor induce significant shielding of the protein surface. On the other hand, we observed a protective effect of the substrate, which slowed down the autooxidative damage induced by the uncoupling reaction. These observations further complement the picture of structural changes during LPMO catalysis.

000      
00000naa a2200000 a 4500
001      
bmc21012868
003      
CZ-PrNML
005      
20210507101639.0
007      
ta
008      
210420s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/biom10020242 $2 doi
035    __
$a (PubMed)32033404
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Filandr, Frantisek $u Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 128 43 Prague 2, Czech Republic
245    10
$a Structural Dynamics of Lytic Polysaccharide Monooxygenase during Catalysis / $c F. Filandr, D. Kavan, D. Kracher, CVFP. Laurent, R. Ludwig, P. Man, P. Halada
520    9_
$a Lytic polysaccharide monooxygenases (LPMOs) are industrially important oxidoreductases employed in lignocellulose saccharification. Using advanced time-resolved mass spectrometric techniques, we elucidated the structural determinants for substrate-mediated stabilization of the fungal LPMO9C from Neurosporacrassa during catalysis. LPMOs require a reduction in the active-site copper for catalytic activity. We show that copper reduction in NcLPMO9C leads to structural rearrangements and compaction around the active site. However, longer exposure to the reducing agent ascorbic acid also initiated an uncoupling reaction of the bound oxygen species, leading to oxidative damage, partial unfolding, and even fragmentation of NcLPMO9C. Interestingly, no changes in the hydrogen/deuterium exchange rate were detected upon incubation of oxidized or reduced LPMO with crystalline cellulose, indicating that the LPMO-substrate interactions are mainly side-chain mediated and neither affect intraprotein hydrogen bonding nor induce significant shielding of the protein surface. On the other hand, we observed a protective effect of the substrate, which slowed down the autooxidative damage induced by the uncoupling reaction. These observations further complement the picture of structural changes during LPMO catalysis.
650    _2
$a katalýza $7 D002384
650    _2
$a katalytická doména $7 D020134
650    _2
$a celulosa $x chemie $7 D002482
650    _2
$a měď $x chemie $7 D003300
650    _2
$a fungální proteiny $x chemie $7 D005656
650    _2
$a koncentrace vodíkových iontů $7 D006863
650    _2
$a lignin $x chemie $7 D008031
650    _2
$a hmotnostní spektrometrie $7 D013058
650    _2
$a oxygenasy se smíšenou funkcí $x chemie $7 D006899
650    _2
$a Neurospora crassa $x enzymologie $7 D009492
650    _2
$a oxidační stres $7 D018384
650    _2
$a oxidoreduktasy $x chemie $7 D010088
650    _2
$a kyslík $x chemie $7 D010100
650    _2
$a polysacharidy $x chemie $7 D011134
650    _2
$a vazba proteinů $7 D011485
650    _2
$a konformace proteinů $7 D011487
650    _2
$a reaktivní formy kyslíku $x chemie $7 D017382
650    _2
$a hmotnostní spektrometrie s elektrosprejovou ionizací $7 D021241
650    _2
$a substrátová specifita $7 D013379
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kavan, Daniel $u Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic
700    1_
$a Kracher, Daniel $u Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
700    1_
$a Laurent, Christophe V F P $u Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
700    1_
$a Ludwig, Roland $u Biocatalysis and Biosensing Research Group, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
700    1_
$a Man, Petr $u Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic
700    1_
$a Halada, Petr $u Institute of Microbiology of the CAS, Division BioCeV, Prumyslova 595, 252 50 Vestec, Czech Republic
773    0_
$w MED00188737 $t Biomolecules $x 2218-273X $g Roč. 10, č. 2 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32033404 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210420 $b ABA008
991    __
$a 20210507101639 $b ABA008
999    __
$a ok $b bmc $g 1651110 $s 1133247
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 2 $e 20200205 $i 2218-273X $m Biomolecules $n Biomolecules $x MED00188737
GRA    __
$a 16-34818L $p Grantová Agentura České Republiky $2 International
GRA    __
$a I 2385-N28 $p Austrian Science Fund $2 International
GRA    __
$a W1224 $p Austrian Science Fund $2 International
GRA    __
$a J-4154 $p Austrian Science Fund $2 International
GRA    __
$a LQ1604 $p Ministry of Education, Youth and Science $2 International
GRA    __
$a CZ.1.05/1.1.00/02.0109 $p European Regional Development Fund $2 International
GRA    __
$a LM2015043 $p Ministry of Education, Youth and Science $2 International
GRA    __
$a SVV260427/2019 $p Univerzita Karlova v Praze $2 International
LZP    __
$a Pubmed-20210420

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...