• Je něco špatně v tomto záznamu ?

Secondary Structure Libraries for Artificial Evolution Experiments

R. Sgallová, EA. Curtis

. 2021 ; 26 (6) : . [pub] 20210317

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019037

Grantová podpora
19-20989S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000729 European Regional Development Fund (OP RDE)

Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019037
003      
CZ-PrNML
005      
20210830100614.0
007      
ta
008      
210728s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/molecules26061671 $2 doi
035    __
$a (PubMed)33802780
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Sgallová, Ráchel $u The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic $u Department of Low-Temperature Physics, Faculty of Mathematics and Physics, Charles University in Prague, 180 00 Prague, Czech Republic
245    10
$a Secondary Structure Libraries for Artificial Evolution Experiments / $c R. Sgallová, EA. Curtis
520    9_
$a Methods of artificial evolution such as SELEX and in vitro selection have made it possible to isolate RNA and DNA motifs with a wide range of functions from large random sequence libraries. Once the primary sequence of a functional motif is known, the sequence space around it can be comprehensively explored using a combination of random mutagenesis and selection. However, methods to explore the sequence space of a secondary structure are not as well characterized. Here we address this question by describing a method to construct libraries in a single synthesis which are enriched for sequences with the potential to form a specific secondary structure, such as that of an aptamer, ribozyme, or deoxyribozyme. Although interactions such as base pairs cannot be encoded in a library using conventional DNA synthesizers, it is possible to modulate the probability that two positions will have the potential to pair by biasing the nucleotide composition at these positions. Here we show how to maximize this probability for each of the possible ways to encode a pair (in this study defined as A-U or U-A or C-G or G-C or G.U or U.G). We then use these optimized coding schemes to calculate the number of different variants of model stems and secondary structures expected to occur in a library for a series of structures in which the number of pairs and the extent of conservation of unpaired positions is systematically varied. Our calculations reveal a tradeoff between maximizing the probability of forming a pair and maximizing the number of possible variants of a desired secondary structure that can occur in the library. They also indicate that the optimal coding strategy for a library depends on the complexity of the motif being characterized. Because this approach provides a simple way to generate libraries enriched for sequences with the potential to form a specific secondary structure, we anticipate that it should be useful for the optimization and structural characterization of functional nucleic acid motifs.
650    _2
$a aptamery nukleotidové $x genetika $7 D052157
650    _2
$a párování bází $7 D020029
650    _2
$a DNA katalytická $x genetika $7 D021881
650    _2
$a řízená evoluce molekul $x metody $7 D019020
650    12
$a genová knihovna $7 D015723
650    _2
$a techniky in vitro $7 D066298
650    _2
$a obrácené repetice $x genetika $7 D055029
650    _2
$a mutageneze $7 D016296
650    _2
$a konformace nukleové kyseliny $7 D009690
650    _2
$a nukleotidové motivy $x genetika $7 D059372
650    _2
$a pravděpodobnost $7 D011336
650    _2
$a RNA katalytická $x genetika $7 D016337
650    _2
$a syntetická biologie $x metody $7 D058615
655    _2
$a časopisecké články $7 D016428
700    1_
$a Curtis, Edward A $u The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
773    0_
$w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 26, č. 6 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33802780 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20210830100614 $b ABA008
999    __
$a ok $b bmc $g 1689962 $s 1139483
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 26 $c 6 $e 20210317 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
GRA    __
$a 19-20989S $p Grantová Agentura České Republiky
GRA    __
$a CZ.02.1.01/0.0/0.0/16_019/0000729 $p European Regional Development Fund (OP RDE)
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...