-
Je něco špatně v tomto záznamu ?
Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2
S. Škulj, Z. Brkljača, J. Kreiter, EE. Pohl, M. Vazdar
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
Grantová podpora
P31559
Austrian Science Fund
IP-2019-04-3804
Croatian Science Foundation
NLK
Free Medical Journals
od 2000
Freely Accessible Science Journals
od 2000
PubMed Central
od 2007
Europe PubMed Central
od 2007
ProQuest Central
od 2000-03-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2007-01-01
Health & Medicine (ProQuest)
od 2000-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
PubMed
33530558
DOI
10.3390/ijms22031214
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfát chemie metabolismus MeSH
- iontový transport MeSH
- konformace proteinů * MeSH
- mastné kyseliny chemie metabolismus MeSH
- membránové proteiny chemie MeSH
- mitochondriální proteiny chemie metabolismus MeSH
- myši MeSH
- sekvence aminokyselin MeSH
- simulace molekulární dynamiky * MeSH
- stabilita proteinů MeSH
- uncoupling protein 2 chemie metabolismus MeSH
- vazba proteinů MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Molecular dynamics (MD) simulations of uncoupling proteins (UCP), a class of transmembrane proteins relevant for proton transport across inner mitochondrial membranes, represent a complicated task due to the lack of available structural data. In this work, we use a combination of homology modelling and subsequent microsecond molecular dynamics simulations of UCP2 in the DOPC phospholipid bilayer, starting from the structure of the mitochondrial ATP/ADP carrier (ANT) as a template. We show that this protocol leads to a structure that is impermeable to water, in contrast to MD simulations of UCP2 structures based on the experimental NMR structure. We also show that ATP binding in the UCP2 cavity is tight in the homology modelled structure of UCP2 in agreement with experimental observations. Finally, we corroborate our results with conductance measurements in model membranes, which further suggest that the UCP2 structure modeled from ANT protein possesses additional key functional elements, such as a fatty acid-binding site at the R60 region of the protein, directly related to the proton transport mechanism across inner mitochondrial membranes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21019402
- 003
- CZ-PrNML
- 005
- 20210830100948.0
- 007
- ta
- 008
- 210728s2021 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/ijms22031214 $2 doi
- 035 __
- $a (PubMed)33530558
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Škulj, Sanja $u Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- 245 10
- $a Molecular Dynamics Simulations of Mitochondrial Uncoupling Protein 2 / $c S. Škulj, Z. Brkljača, J. Kreiter, EE. Pohl, M. Vazdar
- 520 9_
- $a Molecular dynamics (MD) simulations of uncoupling proteins (UCP), a class of transmembrane proteins relevant for proton transport across inner mitochondrial membranes, represent a complicated task due to the lack of available structural data. In this work, we use a combination of homology modelling and subsequent microsecond molecular dynamics simulations of UCP2 in the DOPC phospholipid bilayer, starting from the structure of the mitochondrial ATP/ADP carrier (ANT) as a template. We show that this protocol leads to a structure that is impermeable to water, in contrast to MD simulations of UCP2 structures based on the experimental NMR structure. We also show that ATP binding in the UCP2 cavity is tight in the homology modelled structure of UCP2 in agreement with experimental observations. Finally, we corroborate our results with conductance measurements in model membranes, which further suggest that the UCP2 structure modeled from ANT protein possesses additional key functional elements, such as a fatty acid-binding site at the R60 region of the protein, directly related to the proton transport mechanism across inner mitochondrial membranes.
- 650 _2
- $a adenosintrifosfát $x chemie $x metabolismus $7 D000255
- 650 _2
- $a sekvence aminokyselin $7 D000595
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a mastné kyseliny $x chemie $x metabolismus $7 D005227
- 650 _2
- $a iontový transport $7 D017136
- 650 _2
- $a membránové proteiny $x chemie $7 D008565
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a mitochondriální proteiny $x chemie $x metabolismus $7 D024101
- 650 12
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a vazba proteinů $7 D011485
- 650 12
- $a konformace proteinů $7 D011487
- 650 _2
- $a stabilita proteinů $7 D055550
- 650 _2
- $a vztahy mezi strukturou a aktivitou $7 D013329
- 650 _2
- $a uncoupling protein 2 $x chemie $x metabolismus $7 D000071246
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Brkljača, Zlatko $u Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
- 700 1_
- $a Kreiter, Jürgen $u Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria
- 700 1_
- $a Pohl, Elena E $u Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, 1210 Vienna, Austria
- 700 1_
- $a Vazdar, Mario $u Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia $u Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 16610 Prague, Czech Republic
- 773 0_
- $w MED00176142 $t International journal of molecular sciences $x 1422-0067 $g Roč. 22, č. 3 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33530558 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830100948 $b ABA008
- 999 __
- $a ok $b bmc $g 1690263 $s 1139848
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 22 $c 3 $e 20210126 $i 1422-0067 $m International journal of molecular sciences $n Int J Mol Sci $x MED00176142
- GRA __
- $a P31559 $p Austrian Science Fund
- GRA __
- $a IP-2019-04-3804 $p Croatian Science Foundation
- LZP __
- $a Pubmed-20210728