• Je něco špatně v tomto záznamu ?

Automatic diagnosis of multiple cardiac diseases from PCG signals using convolutional neural network

N. Baghel, MK. Dutta, R. Burget

. 2020 ; 197 (-) : 105750. [pub] 20200910

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc21019709

BACKGROUND AND OBJECTIVES: Cardiovascular diseases are critical diseases and need to be diagnosed as early as possible. There is a lack of medical professionals in remote areas to diagnose these diseases. Artificial intelligence-based automatic diagnostic tools can help to diagnose cardiac diseases. This work presents an automatic classification method using machine learning to diagnose multiple cardiac diseases from phonocardiogram signals. METHODS: The proposed system involves a convolutional neural network (CNN) model because of its high accuracy and robustness to automatically diagnose the cardiac disorders from the heart sounds. To improve the accuracy in a noisy environment and make the method robust, the proposed method has used data augmentation techniques for training and multi-classification of multiple cardiac diseases. RESULTS: The model has been validated both heart sound data and augmented data using n-fold cross-validation. Results of all fold have been shown reported in this work. The model has achieved accuracy on the test set up to 98.60% to diagnose multiple cardiac diseases. CONCLUSIONS: The proposed model can be ported to any computing devices like computers, single board computing processors, android handheld devices etc. To make a stand-alone diagnostic tool that may be of help in remote primary health care centres. The proposed method is non-invasive, efficient, robust, and has low time complexity making it suitable for real-time applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21019709
003      
CZ-PrNML
005      
20230720094046.0
007      
ta
008      
210728s2020 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2020.105750 $2 doi
035    __
$a (PubMed)32932128
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Baghel, Neeraj $u Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, India
245    10
$a Automatic diagnosis of multiple cardiac diseases from PCG signals using convolutional neural network / $c N. Baghel, MK. Dutta, R. Burget
520    9_
$a BACKGROUND AND OBJECTIVES: Cardiovascular diseases are critical diseases and need to be diagnosed as early as possible. There is a lack of medical professionals in remote areas to diagnose these diseases. Artificial intelligence-based automatic diagnostic tools can help to diagnose cardiac diseases. This work presents an automatic classification method using machine learning to diagnose multiple cardiac diseases from phonocardiogram signals. METHODS: The proposed system involves a convolutional neural network (CNN) model because of its high accuracy and robustness to automatically diagnose the cardiac disorders from the heart sounds. To improve the accuracy in a noisy environment and make the method robust, the proposed method has used data augmentation techniques for training and multi-classification of multiple cardiac diseases. RESULTS: The model has been validated both heart sound data and augmented data using n-fold cross-validation. Results of all fold have been shown reported in this work. The model has achieved accuracy on the test set up to 98.60% to diagnose multiple cardiac diseases. CONCLUSIONS: The proposed model can be ported to any computing devices like computers, single board computing processors, android handheld devices etc. To make a stand-alone diagnostic tool that may be of help in remote primary health care centres. The proposed method is non-invasive, efficient, robust, and has low time complexity making it suitable for real-time applications.
650    _2
$a umělá inteligence $7 D001185
650    12
$a nemoci srdce $x diagnostické zobrazování $7 D006331
650    12
$a srdeční ozvy $7 D006347
650    _2
$a lidé $7 D006801
650    _2
$a strojové učení $7 D000069550
650    _2
$a neuronové sítě $7 D016571
655    _2
$a časopisecké články $7 D016428
700    1_
$a Dutta, Malay Kishore $u Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, India. Electronic address: malaykishoredutta@gmail.com
700    1_
$a Burget, Radim, $u Brno University of Technology. Brno, Czech Republic $d 1982- $7 jo2015889385
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 197, č. - (2020), s. 105750
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32932128 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20230720094041 $b ABA008
999    __
$a ok $b bmc $g 1690507 $s 1140155
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 197 $c - $d 105750 $e 20200910 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20210728

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...