-
Je něco špatně v tomto záznamu ?
Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms
D. Šilha, K. Švarcová, T. Bajer, K. Královec, E. Tesařová, K. Moučková, M. Pejchalová, P. Bajerová
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 1997
Free Medical Journals
od 1997
PubMed Central
od 2001
Europe PubMed Central
od 2001
ProQuest Central
od 1997-01-01
Open Access Digital Library
od 1997-01-01
Medline Complete (EBSCOhost)
od 2009-03-01
Health & Medicine (ProQuest)
od 1997-01-01
- MeSH
- antiinfekční látky farmakologie MeSH
- Arcobacter účinky léků MeSH
- buňky A549 MeSH
- Candida albicans účinky léků MeSH
- destilace MeSH
- levandule chemie MeSH
- lidé MeSH
- nádory plic farmakoterapie MeSH
- oleje prchavé farmakologie MeSH
- oleje rostlin farmakologie MeSH
- proliferace buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21019782
- 003
- CZ-PrNML
- 005
- 20210830101358.0
- 007
- ta
- 008
- 210728s2020 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/molecules25235654 $2 doi
- 035 __
- $a (PubMed)33266263
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Šilha, David $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 245 10
- $a Chemical Composition of Natural Hydrolates and Their Antimicrobial Activity on Arcobacter-Like Cells in Comparison with Other Microorganisms / $c D. Šilha, K. Švarcová, T. Bajer, K. Královec, E. Tesařová, K. Moučková, M. Pejchalová, P. Bajerová
- 520 9_
- $a Hydrolates obtained via the hydrodistillation and steam distillation of Lavandulaangustifolia Mill., Syzygiumaromaticum L., Foeniculumvulgare Mill., and Laurusnobilis L. were analyzed by gas chromatography with flame ionization detector (GC-FID) and gas chromatography coupled to mass spectrometry (GC-MS). Additionally, the hydrolates were evaluated for antimicrobial activity (disk-diffusion and microdilution method), influence on biofilm formation (Christensen method) and cytotoxicity of concentrated hydrolates against human cell lines (A549) by xCELLigence system. Using chemical analysis, 48, 9, 13 and 33 different components were detected in lavender, clove, fennel and laurel hydrolates, respectively. Lavender hydrolate contained the largest proportion of 1,8-cineol, linalool furanoxide, and linalool. The main components of laurel hydrolate were 1,8-cineol, 4-terpineol and α-terpineol. Fenchone and estragole were the most abundant in fennel hydrolate, and eugenol and eugenyl acetate in clove hydrolate. Concentrated hydrolates showed significant antimicrobial activity. Clove hydrolate was among the most antimicrobially active agents, most preferably against C. albicans, with an inhibition zone up to 23.5 mm. Moreover, concentrated hydrolates did not show any cytotoxic effect again8 st human A549 cells. In the presence of the non-concentrated hydrolates, significantly reduced biofilm formation was observed; however, with concentrated clove hydrolate, there was an increase in biofilm formation, e.g., of A. thereius, A. lanthieri, and A. butzleri. Research shows new findings about hydrolates that may be important in natural medicine or for preservation purposes.
- 650 _2
- $a buňky A549 $7 D000072283
- 650 _2
- $a antiinfekční látky $x farmakologie $7 D000890
- 650 _2
- $a Arcobacter $x účinky léků $7 D020640
- 650 _2
- $a Candida albicans $x účinky léků $7 D002176
- 650 _2
- $a proliferace buněk $7 D049109
- 650 _2
- $a destilace $7 D057168
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a levandule $x chemie $7 D027523
- 650 _2
- $a nádory plic $x farmakoterapie $7 D008175
- 650 _2
- $a oleje prchavé $x farmakologie $7 D009822
- 650 _2
- $a oleje rostlin $x farmakologie $7 D010938
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Švarcová, Karolína $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 700 1_
- $a Bajer, Tomáš $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 700 1_
- $a Královec, Karel $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 700 1_
- $a Tesařová, Eliška $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 700 1_
- $a Moučková, Kristýna $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 700 1_
- $a Pejchalová, Marcela $u Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 700 1_
- $a Bajerová, Petra $u Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
- 773 0_
- $w MED00180394 $t Molecules (Basel, Switzerland) $x 1420-3049 $g Roč. 25, č. 23 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33266263 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830101358 $b ABA008
- 999 __
- $a ok $b bmc $g 1690566 $s 1140228
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 25 $c 23 $e 20201130 $i 1420-3049 $m Molecules $n Molecules $x MED00180394
- LZP __
- $a Pubmed-20210728