-
Je něco špatně v tomto záznamu ?
MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex
D. Napoli, L. Lupori, R. Mazziotti, G. Sagona, S. Bagnoli, M. Samad, EK. Sacramento, J. Kirkpartick, E. Putignano, S. Chen, E. Terzibasi Tozzini, P. Tognini, P. Baldi, JC. Kwok, A. Cellerino, T. Pizzorusso
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
2017HMH8FA
Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)
NLK
Free Medical Journals
od 2000 do Před 1 rokem
Nature Open Access
od 2014-04-01
PubMed Central
od 2000
Europe PubMed Central
od 2000 do Před 1 rokem
Open Access Digital Library
od 2000-07-01
Medline Complete (EBSCOhost)
od 2000-07-01 do Před 1 rokem
Wiley Free Content
od 2000 do Před 1 rokem
Springer Nature OA/Free Journals
od 2014-04-01
PubMed
33026181
DOI
10.15252/embr.202050431
Knihovny.cz E-zdroje
- MeSH
- mikro RNA * genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neuroplasticita genetika MeSH
- oční dominance genetika MeSH
- proteomika MeSH
- zrakové korové centrum * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.
Department of Clinical and Experimental Medicine University of Pisa Pisa Italy
Department of Developmental Neuroscience IRCCS Stella Maris Foundation Pisa Italy
Institute of Experimental Medicine Czech Academy of Science Prague Czech Republic
Institute of Neuroscience National Research Council Pisa Italy
Lab Scuola Normale Superiore Pisa Italy
Leibniz Institute on Aging Fritz Lipmann Institute Jena Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21019849
- 003
- CZ-PrNML
- 005
- 20210830101440.0
- 007
- ta
- 008
- 210728s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.15252/embr.202050431 $2 doi
- 035 __
- $a (PubMed)33026181
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Napoli, Debora $u BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy $u Institute of Neuroscience, National Research Council, Pisa, Italy
- 245 10
- $a MiR-29 coordinates age-dependent plasticity brakes in the adult visual cortex / $c D. Napoli, L. Lupori, R. Mazziotti, G. Sagona, S. Bagnoli, M. Samad, EK. Sacramento, J. Kirkpartick, E. Putignano, S. Chen, E. Terzibasi Tozzini, P. Tognini, P. Baldi, JC. Kwok, A. Cellerino, T. Pizzorusso
- 520 9_
- $a Visual cortical circuits show profound plasticity during early life and are later stabilized by molecular "brakes" limiting excessive rewiring beyond a critical period. The mechanisms coordinating the expression of these factors during the transition from development to adulthood remain unknown. We found that miR-29a expression in the visual cortex dramatically increases with age, but it is not experience-dependent. Precocious high levels of miR-29a blocked ocular dominance plasticity and caused an early appearance of perineuronal nets. Conversely, inhibition of miR-29a in adult mice using LNA antagomirs activated ocular dominance plasticity, reduced perineuronal nets, and restored their juvenile chemical composition. Activated adult plasticity had the typical functional and proteomic signature of critical period plasticity. Transcriptomic and proteomic studies indicated that miR-29a manipulation regulates the expression of plasticity brakes in specific cortical circuits. These data indicate that miR-29a is a regulator of the plasticity brakes promoting age-dependent stabilization of visual cortical connections.
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a oční dominance $x genetika $7 D023882
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 12
- $a mikro RNA $x genetika $7 D035683
- 650 _2
- $a neuroplasticita $x genetika $7 D009473
- 650 _2
- $a proteomika $7 D040901
- 650 12
- $a zrakové korové centrum $7 D014793
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lupori, Leonardo $u BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
- 700 1_
- $a Mazziotti, Raffaele $u Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
- 700 1_
- $a Sagona, Giulia $u Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy $u Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy $u Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, Pisa, Italy
- 700 1_
- $a Bagnoli, Sara $u BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy
- 700 1_
- $a Samad, Muntaha $u Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
- 700 1_
- $a Sacramento, Erika Kelmer $u Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- 700 1_
- $a Kirkpartick, Joanna $u Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- 700 1_
- $a Putignano, Elena $u Institute of Neuroscience, National Research Council, Pisa, Italy
- 700 1_
- $a Chen, Siwei $u Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
- 700 1_
- $a Terzibasi Tozzini, Eva $u Stazione Zoologica Anton Dohrn, Naples, Italy
- 700 1_
- $a Tognini, Paola $u BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy $u Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
- 700 1_
- $a Baldi, Pierre $u Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA, USA
- 700 1_
- $a Kwok, Jessica Cf $u School of Biomedical Sciences, University of Leeds, Leeds, UK $u Institute of Experimental Medicine, Czech Academy of Science, Prague, Czech Republic
- 700 1_
- $a Cellerino, Alessandro $u BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy $u Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- 700 1_
- $a Pizzorusso, Tommaso $u BIO@SNS Lab, Scuola Normale Superiore, Pisa, Italy $u Institute of Neuroscience, National Research Council, Pisa, Italy $u Department of Neuroscience, Psychology, Drug Research and Child Health, NEUROFARBA University of Florence, Florence, Italy
- 773 0_
- $w MED00006590 $t EMBO reports $x 1469-3178 $g Roč. 21, č. 11 (2020), s. e50431
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33026181 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830101440 $b ABA008
- 999 __
- $a ok $b bmc $g 1690618 $s 1140295
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 21 $c 11 $d e50431 $e 20201007 $i 1469-3178 $m Embo reports $n EMBO Rep $x MED00006590
- GRA __
- $a 2017HMH8FA $p Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR)
- LZP __
- $a Pubmed-20210728