-
Something wrong with this record ?
Development and validation of two SCORE-based cardiovascular risk prediction models for Eastern Europe: a multicohort study
T. Tillmann, K. Läll, O. Dukes, G. Veronesi, H. Pikhart, A. Peasey, R. Kubinova, M. Kozela, A. Pajak, Y. Nikitin, S. Malyutina, A. Metspalu, T. Esko, K. Fischer, M. Kivimäki, M. Bobak
Language English Country Great Britain
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
MR/R024227/1
Medical Research Council - United Kingdom
106554/Z/14/Z
Wellcome Trust - United Kingdom
064947/Z/01/Z
Wellcome Trust - United Kingdom
R01 AG056477
NIA NIH HHS - United States
NLK
Free Medical Journals
from 1996 to 1 year ago
Open Access Digital Library
from 1996-01-01
- MeSH
- Risk Assessment MeSH
- Cardiovascular Diseases * epidemiology MeSH
- Cohort Studies MeSH
- Humans MeSH
- Prospective Studies MeSH
- Heart Disease Risk Factors MeSH
- Risk Factors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Czech Republic MeSH
- Poland MeSH
- Russia MeSH
AIMS: Cardiovascular disease (CVD) risk prediction models are used in Western European countries, but less so in Eastern European countries where rates of CVD can be two to four times higher. We recalibrated the SCORE prediction model for three Eastern European countries and evaluated the impact of adding seven behavioural and psychosocial risk factors to the model. METHODS AND RESULTS: We developed and validated models using data from the prospective HAPIEE cohort study with 14 598 participants from Russia, Poland, and the Czech Republic (derivation cohort, median follow-up 7.2 years, 338 fatal CVD cases) and Estonian Biobank data with 4632 participants (validation cohort, median follow-up 8.3 years, 91 fatal CVD cases). The first model (recalibrated SCORE) used the same risk factors as in the SCORE model. The second model (HAPIEE SCORE) added education, employment, marital status, depression, body mass index, physical inactivity, and antihypertensive use. Discrimination of the original SCORE model (C-statistic 0.78 in the derivation and 0.83 in the validation cohorts) was improved in recalibrated SCORE (0.82 and 0.85) and HAPIEE SCORE (0.84 and 0.87) models. After dichotomizing risk at the clinically meaningful threshold of 5%, and when comparing the final HAPIEE SCORE model against the original SCORE model, the net reclassification improvement was 0.07 [95% confidence interval (CI) 0.02-0.11] in the derivation cohort and 0.14 (95% CI 0.04-0.25) in the validation cohort. CONCLUSION: Our recalibrated SCORE may be more appropriate than the conventional SCORE for some Eastern European populations. The addition of seven quick, non-invasive, and cheap predictors further improved prediction accuracy.
Estonian Genome Center Institute of Genomics University of Tartu Riia 23b 51010 Tartu Estonia
Institute of Cell and Molecular Biology University of Tartu Riia 23b 51010 Tartu Estonia
Institute of Mathematics and Statistics University of Tartu Narva mnt 18 51009 Tartu Estonia
Novosibirsk State Medical University Krasny Prospect 52 630091 Novosibirsk Russia
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21020127
- 003
- CZ-PrNML
- 005
- 20210830101735.0
- 007
- ta
- 008
- 210728s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/eurheartj/ehaa571 $2 doi
- 035 __
- $a (PubMed)33011775
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Tillmann, Taavi $u Department of Epidemiology & Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK $u Centre for Non-Communicable Disease, Institute for Global Health, University College London, 30 Guilford Street, London WC1N 1EH, UK
- 245 10
- $a Development and validation of two SCORE-based cardiovascular risk prediction models for Eastern Europe: a multicohort study / $c T. Tillmann, K. Läll, O. Dukes, G. Veronesi, H. Pikhart, A. Peasey, R. Kubinova, M. Kozela, A. Pajak, Y. Nikitin, S. Malyutina, A. Metspalu, T. Esko, K. Fischer, M. Kivimäki, M. Bobak
- 520 9_
- $a AIMS: Cardiovascular disease (CVD) risk prediction models are used in Western European countries, but less so in Eastern European countries where rates of CVD can be two to four times higher. We recalibrated the SCORE prediction model for three Eastern European countries and evaluated the impact of adding seven behavioural and psychosocial risk factors to the model. METHODS AND RESULTS: We developed and validated models using data from the prospective HAPIEE cohort study with 14 598 participants from Russia, Poland, and the Czech Republic (derivation cohort, median follow-up 7.2 years, 338 fatal CVD cases) and Estonian Biobank data with 4632 participants (validation cohort, median follow-up 8.3 years, 91 fatal CVD cases). The first model (recalibrated SCORE) used the same risk factors as in the SCORE model. The second model (HAPIEE SCORE) added education, employment, marital status, depression, body mass index, physical inactivity, and antihypertensive use. Discrimination of the original SCORE model (C-statistic 0.78 in the derivation and 0.83 in the validation cohorts) was improved in recalibrated SCORE (0.82 and 0.85) and HAPIEE SCORE (0.84 and 0.87) models. After dichotomizing risk at the clinically meaningful threshold of 5%, and when comparing the final HAPIEE SCORE model against the original SCORE model, the net reclassification improvement was 0.07 [95% confidence interval (CI) 0.02-0.11] in the derivation cohort and 0.14 (95% CI 0.04-0.25) in the validation cohort. CONCLUSION: Our recalibrated SCORE may be more appropriate than the conventional SCORE for some Eastern European populations. The addition of seven quick, non-invasive, and cheap predictors further improved prediction accuracy.
- 650 12
- $a kardiovaskulární nemoci $x epidemiologie $7 D002318
- 650 _2
- $a kohortové studie $7 D015331
- 650 _2
- $a rizikové faktory kardiovaskulárních chorob $7 D000082742
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a prospektivní studie $7 D011446
- 650 _2
- $a hodnocení rizik $7 D018570
- 650 _2
- $a rizikové faktory $7 D012307
- 651 _2
- $a Česká republika $7 D018153
- 651 _2
- $a Polsko $7 D011044
- 651 _2
- $a Rusko $7 D012426
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Läll, Kristi $u Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
- 700 1_
- $a Dukes, Oliver $u Department of Applied Mathematics Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium
- 700 1_
- $a Veronesi, Giovanni $u Research Center in Epidemiology and Preventive Medicine, University of Insubria, Via O. Rossi 9, 21100 Varese, Italy
- 700 1_
- $a Pikhart, Hynek $u Department of Epidemiology & Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- 700 1_
- $a Peasey, Anne $u Department of Epidemiology & Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- 700 1_
- $a Kubinova, Ruzena $u Centre for Environmental Health Monitoring, National Institute of Public Health, Šrobárova 48, 10042 Prague, Czech Republic
- 700 1_
- $a Kozela, Magdalena $u Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, ul. Grzegórzecka 20, 31531 Krakow, Poland
- 700 1_
- $a Pajak, Andrzej $u Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, ul. Grzegórzecka 20, 31531 Krakow, Poland
- 700 1_
- $a Nikitin, Yuri $u Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, SB RAS, 10 Ac. Lavrentieva ave, 630090 Novosibirsk, Russia
- 700 1_
- $a Malyutina, Sofia $u Research Institute of Internal and Preventive Medicine, Branch of the Institute of Cytology and Genetics, SB RAS, 10 Ac. Lavrentieva ave, 630090 Novosibirsk, Russia $u Novosibirsk State Medical University, Krasny Prospect 52, 630091 Novosibirsk, Russia
- 700 1_
- $a Metspalu, Andres $u Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia $u Institute of Cell and Molecular Biology, University of Tartu, Riia 23b, 51010 Tartu, Estonia
- 700 1_
- $a Esko, Tõnu $u Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia
- 700 1_
- $a Fischer, Krista $u Estonian Genome Center, Institute of Genomics, University of Tartu, Riia 23b, 51010 Tartu, Estonia $u Institute of Mathematics and Statistics, University of Tartu, Narva mnt 18, 51009 Tartu, Estonia
- 700 1_
- $a Kivimäki, Mika $u Department of Epidemiology & Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- 700 1_
- $a Bobak, Martin $u Department of Epidemiology & Public Health, University College London, 1-19 Torrington Place, London WC1E 7HB, UK
- 773 0_
- $w MED00009622 $t European heart journal $x 1522-9645 $g Roč. 41, č. 35 (2020), s. 3325-3333
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33011775 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830101735 $b ABA008
- 999 __
- $a ok $b bmc $g 1690836 $s 1140573
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 41 $c 35 $d 3325-3333 $e 20200914 $i 1522-9645 $m European heart journal $n Eur Heart J $x MED00009622
- GRA __
- $a MR/R024227/1 $p Medical Research Council $2 United Kingdom
- GRA __
- $a 106554/Z/14/Z $p Wellcome Trust $2 United Kingdom
- GRA __
- $a 064947/Z/01/Z $p Wellcome Trust $2 United Kingdom
- GRA __
- $a R01 AG056477 $p NIA NIH HHS $2 United States
- LZP __
- $a Pubmed-20210728