-
Je něco špatně v tomto záznamu ?
Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90°
M. Aurbach, J. Spicka, F. Süß, S. Dendorfer
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2003-01-01 do Před 2 měsíci
Health & Medicine (ProQuest)
od 2003-01-01 do Před 2 měsíci
- MeSH
- biomechanika MeSH
- humerus MeSH
- lidé MeSH
- lopatka MeSH
- ramenní kloub * MeSH
- rameno * MeSH
- rozsah kloubních pohybů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Based on electromyographic data and force measurements within the shoulder joint, there is an indication that muscle and resulting joint reaction forces keep increasing over an abduction angle of 90°. In inverse dynamics models, no single parameter could be attributed to simulate this force behaviour accordingly. The aim of this work is to implement kinematic, kinetic and muscle model modifications to an existing model of the shoulder (AnyBody™) and assess their single and combined effects during abduction up to 140° humeral elevation. The kinematics and the EMG activity of 10 test subjects were measured during humeral abduction. Six modifications were implemented in the model: alternative wrapping of the virtual deltoid muscle elements, utilization of a three element Hill model, strength scaling, motion capture driven clavicle elevation/protraction, translation of the GH joint in dependency of the acting forces and an alteration of the scapula/clavicle rhythm. From the six modifications, 16 different combinations were considered. Parameter combinations with the Hill model changed the resultant GH joint reaction force and led to an increase in force during abduction of the humerus above 90°. Under the premise of muscle activities and forces within the GH joint rising after 90° of humeral abduction, we propose that the Hill type muscle model is a crucial parameter for accurately modelling the shoulder. Furthermore, the outcome of this study indicates that the Hill model induces the co-contraction of the muscles of the shoulder without the need of an additional stability criterion for an inverse dynamics approach.
Laboratory for Biomechanics Ostbayerische Technische Hochschule Regensburg Regensburg Germany
New Technologies Research Centre University of West Bohemia Pilsen Czech Republic
Regensburg Center of Biomedical Engineering OTH and University Regensburg Regensburg Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21020462
- 003
- CZ-PrNML
- 005
- 20210830102132.0
- 007
- ta
- 008
- 210728s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.jbiomech.2020.109817 $2 doi
- 035 __
- $a (PubMed)32517973
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Aurbach, Maximilian $u Laboratory for Biomechanics, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany. Electronic address: maximilian.aurbach@oth-regensburg.de
- 245 10
- $a Evaluation of musculoskeletal modelling parameters of the shoulder complex during humeral abduction above 90° / $c M. Aurbach, J. Spicka, F. Süß, S. Dendorfer
- 520 9_
- $a Based on electromyographic data and force measurements within the shoulder joint, there is an indication that muscle and resulting joint reaction forces keep increasing over an abduction angle of 90°. In inverse dynamics models, no single parameter could be attributed to simulate this force behaviour accordingly. The aim of this work is to implement kinematic, kinetic and muscle model modifications to an existing model of the shoulder (AnyBody™) and assess their single and combined effects during abduction up to 140° humeral elevation. The kinematics and the EMG activity of 10 test subjects were measured during humeral abduction. Six modifications were implemented in the model: alternative wrapping of the virtual deltoid muscle elements, utilization of a three element Hill model, strength scaling, motion capture driven clavicle elevation/protraction, translation of the GH joint in dependency of the acting forces and an alteration of the scapula/clavicle rhythm. From the six modifications, 16 different combinations were considered. Parameter combinations with the Hill model changed the resultant GH joint reaction force and led to an increase in force during abduction of the humerus above 90°. Under the premise of muscle activities and forces within the GH joint rising after 90° of humeral abduction, we propose that the Hill type muscle model is a crucial parameter for accurately modelling the shoulder. Furthermore, the outcome of this study indicates that the Hill model induces the co-contraction of the muscles of the shoulder without the need of an additional stability criterion for an inverse dynamics approach.
- 650 _2
- $a biomechanika $7 D001696
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a humerus $7 D006811
- 650 _2
- $a rozsah kloubních pohybů $7 D016059
- 650 _2
- $a lopatka $7 D012540
- 650 12
- $a rameno $7 D012782
- 650 12
- $a ramenní kloub $7 D012785
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Spicka, Jan $u New Technologies Research Centre, University of West Bohemia (UWB), Pilsen, Czech Republic
- 700 1_
- $a Süß, Franz $u Laboratory for Biomechanics, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany; Regensburg Center of Biomedical Engineering, OTH and University Regensburg, Regensburg, Germany
- 700 1_
- $a Dendorfer, Sebastian $u Laboratory for Biomechanics, Ostbayerische Technische Hochschule (OTH) Regensburg, Regensburg, Germany; Regensburg Center of Biomedical Engineering, OTH and University Regensburg, Regensburg, Germany
- 773 0_
- $w MED00002553 $t Journal of biomechanics $x 1873-2380 $g Roč. 106, č. - (2020), s. 109817
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32517973 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830102132 $b ABA008
- 999 __
- $a ok $b bmc $g 1691100 $s 1140908
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 106 $c - $d 109817 $e 20200424 $i 1873-2380 $m Journal of biomechanics $n J Biomech $x MED00002553
- LZP __
- $a Pubmed-20210728