-
Something wrong with this record ?
Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery
S. Laidou, G. Alanis-Lobato, J. Pribyl, T. Raskó, B. Tichy, K. Mikulasek, M. Tsagiopoulou, J. Oppelt, G. Kastrinaki, M. Lefaki, M. Singh, A. Zink, N. Chondrogianni, F. Psomopoulos, A. Prigione, Z. Ivics, S. Pospisilova, P. Skladal, Z. Izsvák, MA....
Language English Country Netherlands
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Directory of Open Access Journals
from 2013
Free Medical Journals
from 2013
PubMed Central
from 2013
Europe PubMed Central
from 2013 to 2020
Open Access Digital Library
from 2013-01-01
Open Access Digital Library
from 2013-01-01
Open Access Digital Library
from 2013-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2013
- MeSH
- Ataxin-1 genetics metabolism MeSH
- Intranuclear Inclusion Bodies * metabolism MeSH
- Nuclear Proteins genetics metabolism MeSH
- Humans MeSH
- Oxidative Stress MeSH
- Nerve Tissue Proteins * genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Molecular Medicine and Surgery Karolinska Institutet 17177 Stockholm Sweden
Division of Medical Biotechnology Paul Ehrlich Institute 63225 Langen Germany
Faculty of Biology Johannes Gutenberg University Mainz 55122 Mainz Germany
Human Embryo and Stem Cell Laboratory The Francis Crick Institute NW1 1AT London UK
Institute of Applied Biosciences Centre for Research and Technology Hellas 57001 Thessaloniki Greece
Max Delbrueck Center for Molecular Medicine in the Helmholtz Association Berlin 13125 Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21020607
- 003
- CZ-PrNML
- 005
- 20240103105753.0
- 007
- ta
- 008
- 210728s2020 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.redox.2020.101458 $2 doi
- 035 __
- $a (PubMed)32145456
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Laidou, Stamatia $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
- 245 10
- $a Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery / $c S. Laidou, G. Alanis-Lobato, J. Pribyl, T. Raskó, B. Tichy, K. Mikulasek, M. Tsagiopoulou, J. Oppelt, G. Kastrinaki, M. Lefaki, M. Singh, A. Zink, N. Chondrogianni, F. Psomopoulos, A. Prigione, Z. Ivics, S. Pospisilova, P. Skladal, Z. Izsvák, MA. Andrade-Navarro, S. Petrakis
- 520 9_
- $a Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
- 650 _2
- $a ataxin-1 $x genetika $x metabolismus $7 D000067696
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a intranukleární inkluzní tělíska $x metabolismus $7 D045586
- 650 12
- $a proteiny nervové tkáně $x genetika $x metabolismus $7 D009419
- 650 _2
- $a jaderné proteiny $x genetika $x metabolismus $7 D009687
- 650 _2
- $a oxidační stres $7 D018384
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Alanis-Lobato, Gregorio $u Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
- 700 1_
- $a Pribyl, Jan $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
- 700 1_
- $a Raskó, Tamás $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
- 700 1_
- $a Tichý, Boris $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic $7 xx0312236
- 700 1_
- $a Mikulasek, Kamil $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
- 700 1_
- $a Tsagiopoulou, Maria $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
- 700 1_
- $a Oppelt, Jan $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
- 700 1_
- $a Kastrinaki, Georgia $u Aerosol and Particle Technology Laboratory/Chemical Process & Energy Resources Institute/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
- 700 1_
- $a Lefaki, Maria $u Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
- 700 1_
- $a Singh, Manvendra $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
- 700 1_
- $a Zink, Annika $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
- 700 1_
- $a Chondrogianni, Niki $u Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
- 700 1_
- $a Psomopoulos, Fotis $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177, Stockholm, Sweden
- 700 1_
- $a Prigione, Alessandro $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
- 700 1_
- $a Ivics, Zoltán $u Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225, Langen, Germany
- 700 1_
- $a Pospisilova, Sarka $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
- 700 1_
- $a Skladal, Petr $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
- 700 1_
- $a Izsvák, Zsuzsanna $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany. Electronic address: zizsvak@mdc-berlin.de
- 700 1_
- $a Andrade-Navarro, Miguel A $u Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany
- 700 1_
- $a Petrakis, Spyros $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece. Electronic address: spetrak@certh.gr
- 773 0_
- $w MED00196805 $t Redox biology $x 2213-2317 $g Roč. 32, č. - (2020), s. 101458
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32145456 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20240103105749 $b ABA008
- 999 __
- $a ok $b bmc $g 1691227 $s 1141053
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 32 $c - $d 101458 $e 20200211 $i 2213-2317 $m Redox biology $n Redox Biol $x MED00196805
- LZP __
- $a Pubmed-20210728