Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery

S. Laidou, G. Alanis-Lobato, J. Pribyl, T. Raskó, B. Tichy, K. Mikulasek, M. Tsagiopoulou, J. Oppelt, G. Kastrinaki, M. Lefaki, M. Singh, A. Zink, N. Chondrogianni, F. Psomopoulos, A. Prigione, Z. Ivics, S. Pospisilova, P. Skladal, Z. Izsvák, MA....

. 2020 ; 32 (-) : 101458. [pub] 20200211

Language English Country Netherlands

Document type Journal Article, Research Support, Non-U.S. Gov't

Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21020607
003      
CZ-PrNML
005      
20240103105753.0
007      
ta
008      
210728s2020 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.redox.2020.101458 $2 doi
035    __
$a (PubMed)32145456
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Laidou, Stamatia $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
245    10
$a Nuclear inclusions of pathogenic ataxin-1 induce oxidative stress and perturb the protein synthesis machinery / $c S. Laidou, G. Alanis-Lobato, J. Pribyl, T. Raskó, B. Tichy, K. Mikulasek, M. Tsagiopoulou, J. Oppelt, G. Kastrinaki, M. Lefaki, M. Singh, A. Zink, N. Chondrogianni, F. Psomopoulos, A. Prigione, Z. Ivics, S. Pospisilova, P. Skladal, Z. Izsvák, MA. Andrade-Navarro, S. Petrakis
520    9_
$a Spinocerebellar ataxia type-1 (SCA1) is caused by an abnormally expanded polyglutamine (polyQ) tract in ataxin-1. These expansions are responsible for protein misfolding and self-assembly into intranuclear inclusion bodies (IIBs) that are somehow linked to neuronal death. However, owing to lack of a suitable cellular model, the downstream consequences of IIB formation are yet to be resolved. Here, we describe a nuclear protein aggregation model of pathogenic human ataxin-1 and characterize IIB effects. Using an inducible Sleeping Beauty transposon system, we overexpressed the ATXN1(Q82) gene in human mesenchymal stem cells that are resistant to the early cytotoxic effects caused by the expression of the mutant protein. We characterized the structure and the protein composition of insoluble polyQ IIBs which gradually occupy the nuclei and are responsible for the generation of reactive oxygen species. In response to their formation, our transcriptome analysis reveals a cerebellum-specific perturbed protein interaction network, primarily affecting protein synthesis. We propose that insoluble polyQ IIBs cause oxidative and nucleolar stress and affect the assembly of the ribosome by capturing or down-regulating essential components. The inducible cell system can be utilized to decipher the cellular consequences of polyQ protein aggregation. Our strategy provides a broadly applicable methodology for studying polyQ diseases.
650    _2
$a ataxin-1 $x genetika $x metabolismus $7 D000067696
650    _2
$a lidé $7 D006801
650    12
$a intranukleární inkluzní tělíska $x metabolismus $7 D045586
650    12
$a proteiny nervové tkáně $x genetika $x metabolismus $7 D009419
650    _2
$a jaderné proteiny $x genetika $x metabolismus $7 D009687
650    _2
$a oxidační stres $7 D018384
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Alanis-Lobato, Gregorio $u Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany; Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, NW1 1AT, London, UK
700    1_
$a Pribyl, Jan $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
700    1_
$a Raskó, Tamás $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
700    1_
$a Tichý, Boris $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic $7 xx0312236
700    1_
$a Mikulasek, Kamil $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
700    1_
$a Tsagiopoulou, Maria $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
700    1_
$a Oppelt, Jan $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
700    1_
$a Kastrinaki, Georgia $u Aerosol and Particle Technology Laboratory/Chemical Process & Energy Resources Institute/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece
700    1_
$a Lefaki, Maria $u Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
700    1_
$a Singh, Manvendra $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany
700    1_
$a Zink, Annika $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
700    1_
$a Chondrogianni, Niki $u Institute of Biology, Medicinal Chemistry & Biotechnology/National Hellenic Research Foundation, 11365, Athens, Greece
700    1_
$a Psomopoulos, Fotis $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece; Department of Molecular Medicine and Surgery, Karolinska Institutet, 17177, Stockholm, Sweden
700    1_
$a Prigione, Alessandro $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany; Department of General Pediatrics, Neonatology and Pediatric Cardiology, University Children's Hospital, Heinrich Heine University, 40225, Düsseldorf, Germany
700    1_
$a Ivics, Zoltán $u Division of Medical Biotechnology, Paul-Ehrlich-Institute, 63225, Langen, Germany
700    1_
$a Pospisilova, Sarka $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
700    1_
$a Skladal, Petr $u Central European Institute of Technology, Masaryk University, 62500, Brno, Czech Republic
700    1_
$a Izsvák, Zsuzsanna $u Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association, Berlin, 13125, Germany. Electronic address: zizsvak@mdc-berlin.de
700    1_
$a Andrade-Navarro, Miguel A $u Faculty of Biology, Johannes Gutenberg University Mainz, 55122, Mainz, Germany
700    1_
$a Petrakis, Spyros $u Institute of Applied Biosciences/Centre for Research and Technology Hellas, 57001, Thessaloniki, Greece. Electronic address: spetrak@certh.gr
773    0_
$w MED00196805 $t Redox biology $x 2213-2317 $g Roč. 32, č. - (2020), s. 101458
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32145456 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20210728 $b ABA008
991    __
$a 20240103105749 $b ABA008
999    __
$a ok $b bmc $g 1691227 $s 1141053
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 32 $c - $d 101458 $e 20200211 $i 2213-2317 $m Redox biology $n Redox Biol $x MED00196805
LZP    __
$a Pubmed-20210728

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...