-
Je něco špatně v tomto záznamu ?
Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila
D. Sparvoli, M. Zoltner, CY. Cheng, MC. Field, AP. Turkewitz
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
R01 GM105783
NIGMS NIH HHS - United States
204697/Z/16/Z
Wellcome Trust - United Kingdom
NLK
Free Medical Journals
od 1966 do Před 6 měsíci
Open Access Digital Library
od 1853-01-01
Open Access Digital Library
od 1853-01-01
PubMed
31964712
DOI
10.1242/jcs.238659
Knihovny.cz E-zdroje
- MeSH
- endozomy MeSH
- lidé MeSH
- lyzozomy MeSH
- Tetrahymena thermophila * genetika MeSH
- vezikulární transportní proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21020747
- 003
- CZ-PrNML
- 005
- 20210830102408.0
- 007
- ta
- 008
- 210728s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/jcs.238659 $2 doi
- 035 __
- $a (PubMed)31964712
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Sparvoli, Daniela $u Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
- 245 10
- $a Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila / $c D. Sparvoli, M. Zoltner, CY. Cheng, MC. Field, AP. Turkewitz
- 520 9_
- $a In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
- 650 _2
- $a endozomy $7 D011992
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lyzozomy $7 D008247
- 650 12
- $a Tetrahymena thermophila $x genetika $7 D016808
- 650 _2
- $a vezikulární transportní proteiny $7 D033921
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Zoltner, Martin $u School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- 700 1_
- $a Cheng, Chao-Yin $u Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
- 700 1_
- $a Field, Mark C $u School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK $u Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
- 700 1_
- $a Turkewitz, Aaron P $u Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA apturkew@uchicago.edu
- 773 0_
- $w MED00002576 $t Journal of cell science $x 1477-9137 $g Roč. 133, č. 3 (2020)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/31964712 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20210728 $b ABA008
- 991 __
- $a 20210830102409 $b ABA008
- 999 __
- $a ok $b bmc $g 1691343 $s 1141193
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 133 $c 3 $e 20200212 $i 1477-9137 $m Journal of cell science $n J Cell Sci $x MED00002576
- GRA __
- $p Wellcome Trust $2 United Kingdom
- GRA __
- $a R01 GM105783 $p NIGMS NIH HHS $2 United States
- GRA __
- $a 204697/Z/16/Z $p Wellcome Trust $2 United Kingdom
- LZP __
- $a Pubmed-20210728