• Je něco špatně v tomto záznamu ?

VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images

A. Sekuboyina, ME. Husseini, A. Bayat, M. Löffler, H. Liebl, H. Li, G. Tetteh, J. Kukačka, C. Payer, D. Štern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S....

. 2021 ; 73 (-) : 102166. [pub] 20210722

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21024926

Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.

Chinese Academy of Sciences China

College of Computer Science and Technology Zhejiang University China

Computer Vision Group iFLYTEK Research South China China

Damo Academy Alibaba Group China

Deep Reasoning AI Inc USA

Department for Quantitative Biomedicine University of Zurich Switzerland

Department of Biomedical Engineering Brno University of Technology Czech Republic

Department of Computing Imperial College London UK

Department of Computing The Hong Kong Polytechnic University China

Department of Electronic and Information Engineering The Hong Kong Polytechnic University China

Department of Electronic Engineering Fudan University China

Department of Informatics Technical University of Munich Germany

Department of Mathematics University of Innsbruck Austria

Department of Neuroradiology Klinikum Rechts der Isar Germany

Department of Radiology and Nuclear Medicine Radboud University Medical Center Nijmegen The Netherlands

Department of Radiology University of North Carolina at Chapel Hill USA

East China Normal University China

EPITA Research and Development Laboratory France

Friedrich Miescher Institute for Biomedical Engineering Switzerland

Gottfried Schatz Research Center Biophysics Medical University of Graz Austria

Healthcare Technology Innovation Centre India

Indian Institute of Technology Madras India

Institute of Biological and Medical Imaging Helmholtz Zentrum München Germany

Institute of Computer Graphics and Vision Graz University of Technology Austria

Institute of Computing Technology Chinese Academy of Sciences China

Lenovo Group China

Munich School of BioEngineering Technical University of Munich Germany

New York University USA

NVIDIA Corporation USA

Ping An Technologies China

Real Doctor AI Research Centre Zhejiang University China

School of Biomedical Engineering Health Science Center Shenzhen University China

School of Computer Science The University of Auckland New Zealand

shapes GmbH Berlin Germany

Shenzhen Research Institute of Big Data China

Technical University of Munich Germany

The School of Biomedical Engineering University of Technology Sydney Australia

The University of Texas MD Anderson Cancer Center USA

Zuse Institute Berlin Germany

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21024926
003      
CZ-PrNML
005      
20211026134255.0
007      
ta
008      
211013s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.media.2021.102166 $2 doi
035    __
$a (PubMed)34340104
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Sekuboyina, Anjany $u Department of Informatics, Technical University of Munich, Germany; Munich School of BioEngineering, Technical University of Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Germany. Electronic address: anjany.sekuboyina@tum.de
245    10
$a VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images / $c A. Sekuboyina, ME. Husseini, A. Bayat, M. Löffler, H. Liebl, H. Li, G. Tetteh, J. Kukačka, C. Payer, D. Štern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S. Lehnert, M. Lirio, NP. Olaguer, H. Ramm, M. Sahu, A. Tack, S. Zachow, T. Jiang, X. Ma, C. Angerman, X. Wang, K. Brown, A. Kirszenberg, É. Puybareau, D. Chen, Y. Bai, BH. Rapazzo, T. Yeah, A. Zhang, S. Xu, F. Hou, Z. He, C. Zeng, Z. Xiangshang, X. Liming, TJ. Netherton, RP. Mumme, LE. Court, Z. Huang, C. He, LW. Wang, SH. Ling, LD. Huỳnh, N. Boutry, R. Jakubicek, J. Chmelik, S. Mulay, M. Sivaprakasam, JC. Paetzold, S. Shit, I. Ezhov, B. Wiestler, B. Glocker, A. Valentinitsch, M. Rempfler, BH. Menze, JS. Kirschke
520    9_
$a Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.
650    _2
$a algoritmy $7 D000465
650    12
$a benchmarking $7 D019985
650    _2
$a lidé $7 D006801
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a páteř $x diagnostické zobrazování $7 D013131
650    12
$a počítačová rentgenová tomografie $7 D014057
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Husseini, Malek E $u Department of Informatics, Technical University of Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Germany
700    1_
$a Bayat, Amirhossein $u Department of Informatics, Technical University of Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Germany
700    1_
$a Löffler, Maximilian $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
700    1_
$a Liebl, Hans $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
700    1_
$a Li, Hongwei $u Department of Informatics, Technical University of Munich, Germany
700    1_
$a Tetteh, Giles $u Department of Informatics, Technical University of Munich, Germany
700    1_
$a Kukačka, Jan $u Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Germany
700    1_
$a Payer, Christian $u Institute of Computer Graphics and Vision, Graz University of Technology, Austria
700    1_
$a Štern, Darko $u Gottfried Schatz Research Center: Biophysics, Medical University of Graz, Austria
700    1_
$a Urschler, Martin $u School of Computer Science, The University of Auckland, New Zealand
700    1_
$a Chen, Maodong $u Computer Vision Group, iFLYTEK Research South China, China
700    1_
$a Cheng, Dalong $u Computer Vision Group, iFLYTEK Research South China, China
700    1_
$a Lessmann, Nikolas $u Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, The Netherlands
700    1_
$a Hu, Yujin $u Shenzhen Research Institute of Big Data, China
700    1_
$a Wang, Tianfu $u School of Biomedical Engineering, Health Science Center, Shenzhen University, China
700    1_
$a Yang, Dong $u NVIDIA Corporation, USA
700    1_
$a Xu, Daguang $u NVIDIA Corporation, USA
700    1_
$a Ambellan, Felix $u Zuse Institute Berlin, Germany
700    1_
$a Amiranashvili, Tamaz $u Zuse Institute Berlin, Germany
700    1_
$a Ehlke, Moritz $u 1000shapes GmbH, Berlin, Germany
700    1_
$a Lamecker, Hans $u 1000shapes GmbH, Berlin, Germany
700    1_
$a Lehnert, Sebastian $u 1000shapes GmbH, Berlin, Germany
700    1_
$a Lirio, Marilia $u 1000shapes GmbH, Berlin, Germany
700    1_
$a Olaguer, Nicolás Pérez de $u 1000shapes GmbH, Berlin, Germany
700    1_
$a Ramm, Heiko $u 1000shapes GmbH, Berlin, Germany
700    1_
$a Sahu, Manish $u Zuse Institute Berlin, Germany
700    1_
$a Tack, Alexander $u Zuse Institute Berlin, Germany
700    1_
$a Zachow, Stefan $u Zuse Institute Berlin, Germany
700    1_
$a Jiang, Tao $u Damo Academy, Alibaba Group, China
700    1_
$a Ma, Xinjun $u Damo Academy, Alibaba Group, China
700    1_
$a Angerman, Christoph $u Department of Mathematics, University of Innsbruck, Austria
700    1_
$a Wang, Xin $u Department of Electronic Engineering, Fudan University, China; Department of Radiology, University of North Carolina at Chapel Hill, USA
700    1_
$a Brown, Kevin $u New York University, USA
700    1_
$a Kirszenberg, Alexandre $u EPITA Research and Development Laboratory (LRDE), France
700    1_
$a Puybareau, Élodie $u EPITA Research and Development Laboratory (LRDE), France
700    1_
$a Chen, Di $u Deep Reasoning AI Inc, USA
700    1_
$a Bai, Yiwei $u Deep Reasoning AI Inc, USA
700    1_
$a Rapazzo, Brandon H $u Deep Reasoning AI Inc, USA
700    1_
$a Yeah, Timyoas $u Chinese Academy of Sciences, China
700    1_
$a Zhang, Amber $u Technical University of Munich, Germany
700    1_
$a Xu, Shangliang $u East China Normal University, China
700    1_
$a Hou, Feng $u Institute of Computing Technology, Chinese Academy of Sciences, China
700    1_
$a He, Zhiqiang $u Lenovo Group, China
700    1_
$a Zeng, Chan $u Ping An Technologies, China
700    1_
$a Xiangshang, Zheng $u College of Computer Science and Technology, Zhejiang University, China; Real Doctor AI Research Centre, Zhejiang University, China
700    1_
$a Liming, Xu $u College of Computer Science and Technology, Zhejiang University, China
700    1_
$a Netherton, Tucker J $u The University of Texas MD Anderson Cancer Center, USA
700    1_
$a Mumme, Raymond P $u The University of Texas MD Anderson Cancer Center, USA
700    1_
$a Court, Laurence E $u The University of Texas MD Anderson Cancer Center, USA
700    1_
$a Huang, Zixun $u Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, China
700    1_
$a He, Chenhang $u Department of Computing, The Hong Kong Polytechnic University, China
700    1_
$a Wang, Li-Wen $u Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, China
700    1_
$a Ling, Sai Ho $u The School of Biomedical Engineering, University of Technology Sydney, Australia
700    1_
$a Huỳnh, Lê Duy $u EPITA Research and Development Laboratory (LRDE), France
700    1_
$a Boutry, Nicolas $u EPITA Research and Development Laboratory (LRDE), France
700    1_
$a Jakubicek, Roman $u Department of Biomedical Engineering, Brno University of Technology, Czech Republic
700    1_
$a Chmelik, Jiri $u Department of Biomedical Engineering, Brno University of Technology, Czech Republic
700    1_
$a Mulay, Supriti $u Indian Institute of Technology Madras, India; Healthcare Technology Innovation Centre, India
700    1_
$a Sivaprakasam, Mohanasankar $u Indian Institute of Technology Madras, India; Healthcare Technology Innovation Centre, India
700    1_
$a Paetzold, Johannes C $u Department of Informatics, Technical University of Munich, Germany
700    1_
$a Shit, Suprosanna $u Department of Informatics, Technical University of Munich, Germany
700    1_
$a Ezhov, Ivan $u Department of Informatics, Technical University of Munich, Germany
700    1_
$a Wiestler, Benedikt $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
700    1_
$a Glocker, Ben $u Department of Computing, Imperial College London, UK
700    1_
$a Valentinitsch, Alexander $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
700    1_
$a Rempfler, Markus $u Friedrich Miescher Institute for Biomedical Engineering, Switzerland
700    1_
$a Menze, Björn H $u Department of Informatics, Technical University of Munich, Germany; Department for Quantitative Biomedicine, University of Zurich, Switzerland
700    1_
$a Kirschke, Jan S $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
773    0_
$w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 73, č. - (2021), s. 102166
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34340104 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026134301 $b ABA008
999    __
$a ok $b bmc $g 1714119 $s 1145433
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 73 $c - $d 102166 $e 20210722 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...