-
Je něco špatně v tomto záznamu ?
VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images
A. Sekuboyina, ME. Husseini, A. Bayat, M. Löffler, H. Liebl, H. Li, G. Tetteh, J. Kukačka, C. Payer, D. Štern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S....
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- algoritmy MeSH
- benchmarking * MeSH
- lidé MeSH
- páteř diagnostické zobrazování MeSH
- počítačová rentgenová tomografie * MeSH
- počítačové zpracování obrazu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.
Chinese Academy of Sciences China
College of Computer Science and Technology Zhejiang University China
Computer Vision Group iFLYTEK Research South China China
Damo Academy Alibaba Group China
Department for Quantitative Biomedicine University of Zurich Switzerland
Department of Biomedical Engineering Brno University of Technology Czech Republic
Department of Computing Imperial College London UK
Department of Computing The Hong Kong Polytechnic University China
Department of Electronic and Information Engineering The Hong Kong Polytechnic University China
Department of Electronic Engineering Fudan University China
Department of Informatics Technical University of Munich Germany
Department of Mathematics University of Innsbruck Austria
Department of Neuroradiology Klinikum Rechts der Isar Germany
Department of Radiology University of North Carolina at Chapel Hill USA
East China Normal University China
EPITA Research and Development Laboratory France
Friedrich Miescher Institute for Biomedical Engineering Switzerland
Gottfried Schatz Research Center Biophysics Medical University of Graz Austria
Healthcare Technology Innovation Centre India
Indian Institute of Technology Madras India
Institute of Biological and Medical Imaging Helmholtz Zentrum München Germany
Institute of Computer Graphics and Vision Graz University of Technology Austria
Institute of Computing Technology Chinese Academy of Sciences China
Munich School of BioEngineering Technical University of Munich Germany
Real Doctor AI Research Centre Zhejiang University China
School of Biomedical Engineering Health Science Center Shenzhen University China
School of Computer Science The University of Auckland New Zealand
Shenzhen Research Institute of Big Data China
Technical University of Munich Germany
The School of Biomedical Engineering University of Technology Sydney Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21024926
- 003
- CZ-PrNML
- 005
- 20211026134255.0
- 007
- ta
- 008
- 211013s2021 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.media.2021.102166 $2 doi
- 035 __
- $a (PubMed)34340104
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Sekuboyina, Anjany $u Department of Informatics, Technical University of Munich, Germany; Munich School of BioEngineering, Technical University of Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Germany. Electronic address: anjany.sekuboyina@tum.de
- 245 10
- $a VerSe: A Vertebrae labelling and segmentation benchmark for multi-detector CT images / $c A. Sekuboyina, ME. Husseini, A. Bayat, M. Löffler, H. Liebl, H. Li, G. Tetteh, J. Kukačka, C. Payer, D. Štern, M. Urschler, M. Chen, D. Cheng, N. Lessmann, Y. Hu, T. Wang, D. Yang, D. Xu, F. Ambellan, T. Amiranashvili, M. Ehlke, H. Lamecker, S. Lehnert, M. Lirio, NP. Olaguer, H. Ramm, M. Sahu, A. Tack, S. Zachow, T. Jiang, X. Ma, C. Angerman, X. Wang, K. Brown, A. Kirszenberg, É. Puybareau, D. Chen, Y. Bai, BH. Rapazzo, T. Yeah, A. Zhang, S. Xu, F. Hou, Z. He, C. Zeng, Z. Xiangshang, X. Liming, TJ. Netherton, RP. Mumme, LE. Court, Z. Huang, C. He, LW. Wang, SH. Ling, LD. Huỳnh, N. Boutry, R. Jakubicek, J. Chmelik, S. Mulay, M. Sivaprakasam, JC. Paetzold, S. Shit, I. Ezhov, B. Wiestler, B. Glocker, A. Valentinitsch, M. Rempfler, BH. Menze, JS. Kirschke
- 520 9_
- $a Vertebral labelling and segmentation are two fundamental tasks in an automated spine processing pipeline. Reliable and accurate processing of spine images is expected to benefit clinical decision support systems for diagnosis, surgery planning, and population-based analysis of spine and bone health. However, designing automated algorithms for spine processing is challenging predominantly due to considerable variations in anatomy and acquisition protocols and due to a severe shortage of publicly available data. Addressing these limitations, the Large Scale Vertebrae Segmentation Challenge (VerSe) was organised in conjunction with the International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) in 2019 and 2020, with a call for algorithms tackling the labelling and segmentation of vertebrae. Two datasets containing a total of 374 multi-detector CT scans from 355 patients were prepared and 4505 vertebrae have individually been annotated at voxel level by a human-machine hybrid algorithm (https://osf.io/nqjyw/, https://osf.io/t98fz/). A total of 25 algorithms were benchmarked on these datasets. In this work, we present the results of this evaluation and further investigate the performance variation at the vertebra level, scan level, and different fields of view. We also evaluate the generalisability of the approaches to an implicit domain shift in data by evaluating the top-performing algorithms of one challenge iteration on data from the other iteration. The principal takeaway from VerSe: the performance of an algorithm in labelling and segmenting a spine scan hinges on its ability to correctly identify vertebrae in cases of rare anatomical variations. The VerSe content and code can be accessed at: https://github.com/anjany/verse.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a benchmarking $7 D019985
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a páteř $x diagnostické zobrazování $7 D013131
- 650 12
- $a počítačová rentgenová tomografie $7 D014057
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Husseini, Malek E $u Department of Informatics, Technical University of Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 700 1_
- $a Bayat, Amirhossein $u Department of Informatics, Technical University of Munich, Germany; Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 700 1_
- $a Löffler, Maximilian $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 700 1_
- $a Liebl, Hans $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 700 1_
- $a Li, Hongwei $u Department of Informatics, Technical University of Munich, Germany
- 700 1_
- $a Tetteh, Giles $u Department of Informatics, Technical University of Munich, Germany
- 700 1_
- $a Kukačka, Jan $u Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Germany
- 700 1_
- $a Payer, Christian $u Institute of Computer Graphics and Vision, Graz University of Technology, Austria
- 700 1_
- $a Štern, Darko $u Gottfried Schatz Research Center: Biophysics, Medical University of Graz, Austria
- 700 1_
- $a Urschler, Martin $u School of Computer Science, The University of Auckland, New Zealand
- 700 1_
- $a Chen, Maodong $u Computer Vision Group, iFLYTEK Research South China, China
- 700 1_
- $a Cheng, Dalong $u Computer Vision Group, iFLYTEK Research South China, China
- 700 1_
- $a Lessmann, Nikolas $u Department of Radiology and Nuclear Medicine, Radboud University Medical Center Nijmegen, The Netherlands
- 700 1_
- $a Hu, Yujin $u Shenzhen Research Institute of Big Data, China
- 700 1_
- $a Wang, Tianfu $u School of Biomedical Engineering, Health Science Center, Shenzhen University, China
- 700 1_
- $a Yang, Dong $u NVIDIA Corporation, USA
- 700 1_
- $a Xu, Daguang $u NVIDIA Corporation, USA
- 700 1_
- $a Ambellan, Felix $u Zuse Institute Berlin, Germany
- 700 1_
- $a Amiranashvili, Tamaz $u Zuse Institute Berlin, Germany
- 700 1_
- $a Ehlke, Moritz $u 1000shapes GmbH, Berlin, Germany
- 700 1_
- $a Lamecker, Hans $u 1000shapes GmbH, Berlin, Germany
- 700 1_
- $a Lehnert, Sebastian $u 1000shapes GmbH, Berlin, Germany
- 700 1_
- $a Lirio, Marilia $u 1000shapes GmbH, Berlin, Germany
- 700 1_
- $a Olaguer, Nicolás Pérez de $u 1000shapes GmbH, Berlin, Germany
- 700 1_
- $a Ramm, Heiko $u 1000shapes GmbH, Berlin, Germany
- 700 1_
- $a Sahu, Manish $u Zuse Institute Berlin, Germany
- 700 1_
- $a Tack, Alexander $u Zuse Institute Berlin, Germany
- 700 1_
- $a Zachow, Stefan $u Zuse Institute Berlin, Germany
- 700 1_
- $a Jiang, Tao $u Damo Academy, Alibaba Group, China
- 700 1_
- $a Ma, Xinjun $u Damo Academy, Alibaba Group, China
- 700 1_
- $a Angerman, Christoph $u Department of Mathematics, University of Innsbruck, Austria
- 700 1_
- $a Wang, Xin $u Department of Electronic Engineering, Fudan University, China; Department of Radiology, University of North Carolina at Chapel Hill, USA
- 700 1_
- $a Brown, Kevin $u New York University, USA
- 700 1_
- $a Kirszenberg, Alexandre $u EPITA Research and Development Laboratory (LRDE), France
- 700 1_
- $a Puybareau, Élodie $u EPITA Research and Development Laboratory (LRDE), France
- 700 1_
- $a Chen, Di $u Deep Reasoning AI Inc, USA
- 700 1_
- $a Bai, Yiwei $u Deep Reasoning AI Inc, USA
- 700 1_
- $a Rapazzo, Brandon H $u Deep Reasoning AI Inc, USA
- 700 1_
- $a Yeah, Timyoas $u Chinese Academy of Sciences, China
- 700 1_
- $a Zhang, Amber $u Technical University of Munich, Germany
- 700 1_
- $a Xu, Shangliang $u East China Normal University, China
- 700 1_
- $a Hou, Feng $u Institute of Computing Technology, Chinese Academy of Sciences, China
- 700 1_
- $a He, Zhiqiang $u Lenovo Group, China
- 700 1_
- $a Zeng, Chan $u Ping An Technologies, China
- 700 1_
- $a Xiangshang, Zheng $u College of Computer Science and Technology, Zhejiang University, China; Real Doctor AI Research Centre, Zhejiang University, China
- 700 1_
- $a Liming, Xu $u College of Computer Science and Technology, Zhejiang University, China
- 700 1_
- $a Netherton, Tucker J $u The University of Texas MD Anderson Cancer Center, USA
- 700 1_
- $a Mumme, Raymond P $u The University of Texas MD Anderson Cancer Center, USA
- 700 1_
- $a Court, Laurence E $u The University of Texas MD Anderson Cancer Center, USA
- 700 1_
- $a Huang, Zixun $u Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, China
- 700 1_
- $a He, Chenhang $u Department of Computing, The Hong Kong Polytechnic University, China
- 700 1_
- $a Wang, Li-Wen $u Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, China
- 700 1_
- $a Ling, Sai Ho $u The School of Biomedical Engineering, University of Technology Sydney, Australia
- 700 1_
- $a Huỳnh, Lê Duy $u EPITA Research and Development Laboratory (LRDE), France
- 700 1_
- $a Boutry, Nicolas $u EPITA Research and Development Laboratory (LRDE), France
- 700 1_
- $a Jakubicek, Roman $u Department of Biomedical Engineering, Brno University of Technology, Czech Republic
- 700 1_
- $a Chmelik, Jiri $u Department of Biomedical Engineering, Brno University of Technology, Czech Republic
- 700 1_
- $a Mulay, Supriti $u Indian Institute of Technology Madras, India; Healthcare Technology Innovation Centre, India
- 700 1_
- $a Sivaprakasam, Mohanasankar $u Indian Institute of Technology Madras, India; Healthcare Technology Innovation Centre, India
- 700 1_
- $a Paetzold, Johannes C $u Department of Informatics, Technical University of Munich, Germany
- 700 1_
- $a Shit, Suprosanna $u Department of Informatics, Technical University of Munich, Germany
- 700 1_
- $a Ezhov, Ivan $u Department of Informatics, Technical University of Munich, Germany
- 700 1_
- $a Wiestler, Benedikt $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 700 1_
- $a Glocker, Ben $u Department of Computing, Imperial College London, UK
- 700 1_
- $a Valentinitsch, Alexander $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 700 1_
- $a Rempfler, Markus $u Friedrich Miescher Institute for Biomedical Engineering, Switzerland
- 700 1_
- $a Menze, Björn H $u Department of Informatics, Technical University of Munich, Germany; Department for Quantitative Biomedicine, University of Zurich, Switzerland
- 700 1_
- $a Kirschke, Jan S $u Department of Neuroradiology, Klinikum Rechts der Isar, Germany
- 773 0_
- $w MED00007107 $t Medical image analysis $x 1361-8423 $g Roč. 73, č. - (2021), s. 102166
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34340104 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026134301 $b ABA008
- 999 __
- $a ok $b bmc $g 1714119 $s 1145433
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 73 $c - $d 102166 $e 20210722 $i 1361-8423 $m Medical image analysis $n Med Image Anal $x MED00007107
- LZP __
- $a Pubmed-20211013