-
Je něco špatně v tomto záznamu ?
Improving structural variant clustering to reduce the negative effect of the breakpoint uncertainty problem
J. Geryk, A. Zinkova, I. Zedníková, H. Simková, V. Stenzl, M. Korabecna
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
VI20172020102
Ministry of Interior of the Czech Republic
VI20172020102
Ministry of Interior of the Czech Republic
VI20172020102
Ministry of Interior of the Czech Republic
VI20172020102
Ministry of Interior of the Czech Republic
VI20172020102
Ministry of Interior of the Czech Republic
VI20172020102
Ministry of Interior of the Czech Republic
NLK
BioMedCentral
od 2000-12-01
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-07-01
Medline Complete (EBSCOhost)
od 2000-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
- MeSH
- genom lidský * MeSH
- genomika MeSH
- lidé MeSH
- nejistota MeSH
- shluková analýza MeSH
- strukturální variace genomu * MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Structural variants (SVs) represent an important source of genetic variation. One of the most critical problems in their detection is breakpoint uncertainty associated with the inability to determine their exact genomic position. Breakpoint uncertainty is a characteristic issue of structural variants detected via short-read sequencing methods and complicates subsequent population analyses. The commonly used heuristic strategy reduces this issue by clustering/merging nearby structural variants of the same type before the data from individual samples are merged. RESULTS: We compared the two most used dissimilarity measures for SV clustering in terms of Mendelian inheritance errors (MIE), kinship prediction, and deviation from Hardy-Weinberg equilibrium. We analyzed the occurrence of Mendelian-inconsistent SV clusters that can be collapsed into one Mendelian-consistent SV as a new measure of dataset consistency. We also developed a new method based on constrained clustering that explicitly identifies these types of clusters. CONCLUSIONS: We found that the dissimilarity measure based on the distance between SVs breakpoints produces slightly better results than the measure based on SVs overlap. This difference is evident in trivial and corrected clustering strategy, but not in constrained clustering strategy. However, constrained clustering strategy provided the best results in all aspects, regardless of the dissimilarity measure used.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21024940
- 003
- CZ-PrNML
- 005
- 20211026134249.0
- 007
- ta
- 008
- 211013s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12859-021-04374-3 $2 doi
- 035 __
- $a (PubMed)34579642
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Geryk, Jan $u Department of Biology and Medical Genetics, Second Faculty of Medicine, Charles University and University Hospital Motol, V Úvalu 84, 15006, Prague, Czech Republic. jan.geryk@fnmotol.cz $u Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic. jan.geryk@fnmotol.cz
- 245 10
- $a Improving structural variant clustering to reduce the negative effect of the breakpoint uncertainty problem / $c J. Geryk, A. Zinkova, I. Zedníková, H. Simková, V. Stenzl, M. Korabecna
- 520 9_
- $a BACKGROUND: Structural variants (SVs) represent an important source of genetic variation. One of the most critical problems in their detection is breakpoint uncertainty associated with the inability to determine their exact genomic position. Breakpoint uncertainty is a characteristic issue of structural variants detected via short-read sequencing methods and complicates subsequent population analyses. The commonly used heuristic strategy reduces this issue by clustering/merging nearby structural variants of the same type before the data from individual samples are merged. RESULTS: We compared the two most used dissimilarity measures for SV clustering in terms of Mendelian inheritance errors (MIE), kinship prediction, and deviation from Hardy-Weinberg equilibrium. We analyzed the occurrence of Mendelian-inconsistent SV clusters that can be collapsed into one Mendelian-consistent SV as a new measure of dataset consistency. We also developed a new method based on constrained clustering that explicitly identifies these types of clusters. CONCLUSIONS: We found that the dissimilarity measure based on the distance between SVs breakpoints produces slightly better results than the measure based on SVs overlap. This difference is evident in trivial and corrected clustering strategy, but not in constrained clustering strategy. However, constrained clustering strategy provided the best results in all aspects, regardless of the dissimilarity measure used.
- 650 _2
- $a shluková analýza $7 D016000
- 650 12
- $a genom lidský $7 D015894
- 650 12
- $a strukturální variace genomu $7 D056914
- 650 _2
- $a genomika $7 D023281
- 650 _2
- $a vysoce účinné nukleotidové sekvenování $7 D059014
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a nejistota $7 D035501
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Zinkova, Alzbeta $u Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
- 700 1_
- $a Zedníková, Iveta $u Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
- 700 1_
- $a Simková, Halina $u Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
- 700 1_
- $a Stenzl, Vlastimil $u Department of Forensic Genetics, Institute of Criminalistics, Strojnická 27, 170 89, Prague, Czech Republic
- 700 1_
- $a Korabecna, Marie $u Department of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00, Prague, Czech Republic
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 22, č. 1 (2021), s. 464
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34579642 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026134255 $b ABA008
- 999 __
- $a ok $b bmc $g 1714127 $s 1145447
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 22 $c 1 $d 464 $e 20210927 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- GRA __
- $a VI20172020102 $p Ministry of Interior of the Czech Republic
- GRA __
- $a VI20172020102 $p Ministry of Interior of the Czech Republic
- GRA __
- $a VI20172020102 $p Ministry of Interior of the Czech Republic
- GRA __
- $a VI20172020102 $p Ministry of Interior of the Czech Republic
- GRA __
- $a VI20172020102 $p Ministry of Interior of the Czech Republic
- GRA __
- $a VI20172020102 $p Ministry of Interior of the Czech Republic
- LZP __
- $a Pubmed-20211013