-
Something wrong with this record ?
Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression
E. De Brouwer, T. Becker, Y. Moreau, EK. Havrdova, M. Trojano, S. Eichau, S. Ozakbas, M. Onofrj, P. Grammond, J. Kuhle, L. Kappos, P. Sola, E. Cartechini, J. Lechner-Scott, R. Alroughani, O. Gerlach, T. Kalincik, F. Granella, F. Grand'Maison, R....
Language English Country Ireland
Document type Journal Article
- MeSH
- Humans MeSH
- Neural Networks, Computer MeSH
- Multiple Sclerosis * MeSH
- Machine Learning * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
1 Biostat Data Science Institute Hasselt University Diepenbeek Belgium
Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino Avellino Italy
Azienda Ospedaliera Universitaria Modena Italy
Azienda Sanitaria Unica Regionale Marche AV3 Macerata Italy
Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases Istanbul Turkey
Box Hill Hospital Melbourne Australia
Charles University Prague General University Hospital Prague Czech
CISSS Chaudire Appalache Levis Canada
Cliniques Universitaires Saint Luc Brussels Belgium
CORe Department of Medicine University of Melbourne Melbourne Australia
Department of Basic Medical Sciences Neuroscience and Sense Organs University of Bari Bari Italy
Department of Immunology Biomedical Research Institute Hasselt University Diepenbeek 3590 Belgium
Dept of Rehabilitation mons L Novarese Hospital Moncrivello Italy
Dokuz Eylul University Konak Izmir Turkey
ESAT STADIUS KU Leuven Leuven 3001 Belgium
Garibaldi Hospital Catania Italy
Hospital Clinico San Carlos Madrid Spain
Hospital de Galdakao Usansolo Galdakao Spain
Hospital Germans Trias i Pujol Badalona Spain
Hospital Universitario Donostia San Sebastain Spain
Hospital Universitario Virgen Macarena Sevilla Spain
IRCCS Mondino Foundation Pavia Italy
Isfahan Neurosciences Research Center Isfahan University of Medical Sciences Isfahan Iran
Jewish General Hospital Montreal Canada
KTU Medical Faculty Farabi Hospital Trabzon Turkey
Mayis University Samsun Turkey
Melbourne MS Centre Department of Neurology Royal Melbourne Hospital Melbourne Australia
previously at Ospedali Riuniti di Salerno Salerno Italy
Rehabilitation and MS Centre Overpelt Hasselt University Hasselt Belgium
University G d'Annunzio Chieti Italy
University Hospital Reina Sofia Cordoba Spain
University Newcastle Newcastle Australia
University of Debrecen Debrecen Hungary
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025001
- 003
- CZ-PrNML
- 005
- 20211026134218.0
- 007
- ta
- 008
- 211013s2021 ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmpb.2021.106180 $2 doi
- 035 __
- $a (PubMed)34146771
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a De Brouwer, Edward $u ESAT-STADIUS, KU Leuven, Leuven 3001, Belgium. Electronic address: edward.debrouwer@esat.kuleuven.be
- 245 10
- $a Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression / $c E. De Brouwer, T. Becker, Y. Moreau, EK. Havrdova, M. Trojano, S. Eichau, S. Ozakbas, M. Onofrj, P. Grammond, J. Kuhle, L. Kappos, P. Sola, E. Cartechini, J. Lechner-Scott, R. Alroughani, O. Gerlach, T. Kalincik, F. Granella, F. Grand'Maison, R. Bergamaschi, M. José Sá, B. Van Wijmeersch, A. Soysal, JL. Sanchez-Menoyo, C. Solaro, C. Boz, G. Iuliano, K. Buzzard, E. Aguera-Morales, M. Terzi, TC. Trivio, D. Spitaleri, V. Van Pesch, V. Shaygannejad, F. Moore, C. Oreja-Guevara, D. Maimone, R. Gouider, T. Csepany, C. Ramo-Tello, L. Peeters
- 520 9_
- $a BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a strojové učení $7 D000069550
- 650 12
- $a roztroušená skleróza $7 D009103
- 650 _2
- $a neuronové sítě $7 D016571
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Becker, Thijs $u I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium. Electronic address: thijs.becker@uhasselt.be
- 700 1_
- $a Moreau, Yves $u ESAT-STADIUS, KU Leuven, Leuven 3001, Belgium. Electronic address: moreau@esat.kuleuven.be
- 700 1_
- $a Havrdova, Eva Kubala $u Charles University in Prague General University Hospital, Prague, Czech
- 700 1_
- $a Trojano, Maria $u Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
- 700 1_
- $a Eichau, Sara $u Hospital Universitario Virgen Macarena, Sevilla, Spain
- 700 1_
- $a Ozakbas, Serkan $u Dokuz Eylul University, Konak/Izmir, Turkey
- 700 1_
- $a Onofrj, Marco $u University G. d'Annunzio, Chieti, Italy
- 700 1_
- $a Grammond, Pierre $u CISSS Chaudire-Appalache, Levis, Canada
- 700 1_
- $a Kuhle, Jens $u Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
- 700 1_
- $a Kappos, Ludwig $u Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
- 700 1_
- $a Sola, Patrizia $u Azienda Ospedaliera Universitaria, Modena, Italy
- 700 1_
- $a Cartechini, Elisabetta $u Azienda Sanitaria Unica Regionale Marche - AV3, Macerata, Italy
- 700 1_
- $a Lechner-Scott, Jeannette $u University Newcastle, Newcastle, Australia
- 700 1_
- $a Alroughani, Raed $u Amiri Hospital, Sharq, Kuwait
- 700 1_
- $a Gerlach, Oliver $u Zuyderland Ziekenhuis, Sittard, the Netherlands
- 700 1_
- $a Kalincik, Tomas $u Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
- 700 1_
- $a Granella, Franco $u University of Parma, Parma, Italy
- 700 1_
- $a Grand'Maison, Francois $u Neuro Rive-Sud, Quebec, Canada
- 700 1_
- $a Bergamaschi, Roberto $u IRCCS Mondino Foundation, Pavia, Italy
- 700 1_
- $a José Sá, Maria $u Department of Neurology, Centro Hospitalar Universitario de So Joo and University Fernando Pessoa, Porto, Portugal
- 700 1_
- $a Van Wijmeersch, Bart $u Rehabilitation and MS-Centre Overpelt Hasselt University, Hasselt, Belgium
- 700 1_
- $a Soysal, Aysun $u Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
- 700 1_
- $a Sanchez-Menoyo, Jose Luis $u Hospital de Galdakao-Usansolo, Galdakao, Spain
- 700 1_
- $a Solaro, Claudio $u Dept of Rehabilitation mons L Novarese Hospital, Moncrivello, Italy
- 700 1_
- $a Boz, Cavit $u KTU Medical Faculty Farabi Hospital, Trabzon, Turkey
- 700 1_
- $a Iuliano, Gerardo $u previously at Ospedali Riuniti di Salerno, Salerno, Italy
- 700 1_
- $a Buzzard, Katherine $u Box Hill Hospital, Melbourne, Australia
- 700 1_
- $a Aguera-Morales, Eduardo $u University Hospital Reina Sofia, Cordoba, Spain
- 700 1_
- $a Terzi, Murat $u 19 Mayis University, Samsun, Turkey
- 700 1_
- $a Trivio, Tamara Castillo $u Hospital Universitario Donostia, San Sebastain, Spain
- 700 1_
- $a Spitaleri, Daniele $u Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
- 700 1_
- $a Van Pesch, Vincent $u Cliniques Universitaires Saint-Luc, Brussels, Belgium
- 700 1_
- $a Shaygannejad, Vahid $u Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- 700 1_
- $a Moore, Fraser $u Jewish General Hospital, Montreal, Canada
- 700 1_
- $a Oreja-Guevara, Celia $u Hospital Clinico San Carlos, Madrid, Spain
- 700 1_
- $a Maimone, Davide $u Garibaldi Hospital, Catania, Italy
- 700 1_
- $a Gouider, Riadh $u Razi Hospital, Manouba, Tunisia
- 700 1_
- $a Csepany, Tunde $u University of Debrecen, Debrecen, Hungary
- 700 1_
- $a Ramo-Tello, Cristina $u Hospital Germans Trias i Pujol, Badalona, Spain
- 700 1_
- $a Peeters, Liesbet $u I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium; I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium. Electronic address: liesbet.peeters@uhasselt.be
- 773 0_
- $w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 208, č. - (2021), s. 106180
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34146771 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026134224 $b ABA008
- 999 __
- $a ok $b bmc $g 1714170 $s 1145508
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 208 $c - $d 106180 $e 20210518 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
- LZP __
- $a Pubmed-20211013