• Something wrong with this record ?

Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression

E. De Brouwer, T. Becker, Y. Moreau, EK. Havrdova, M. Trojano, S. Eichau, S. Ozakbas, M. Onofrj, P. Grammond, J. Kuhle, L. Kappos, P. Sola, E. Cartechini, J. Lechner-Scott, R. Alroughani, O. Gerlach, T. Kalincik, F. Granella, F. Grand'Maison, R....

. 2021 ; 208 (-) : 106180. [pub] 20210518

Language English Country Ireland

Document type Journal Article

BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.

1 Biostat Data Science Institute Hasselt University Diepenbeek Belgium

Amiri Hospital Sharq Kuwait

Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino Avellino Italy

Azienda Ospedaliera Universitaria Modena Italy

Azienda Sanitaria Unica Regionale Marche AV3 Macerata Italy

Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases Istanbul Turkey

Box Hill Hospital Melbourne Australia

Charles University Prague General University Hospital Prague Czech

CISSS Chaudire Appalache Levis Canada

Cliniques Universitaires Saint Luc Brussels Belgium

CORe Department of Medicine University of Melbourne Melbourne Australia

Department of Basic Medical Sciences Neuroscience and Sense Organs University of Bari Bari Italy

Department of Immunology Biomedical Research Institute Hasselt University Diepenbeek 3590 Belgium

Department of Neurology Centro Hospitalar Universitario de So Joo and University Fernando Pessoa Porto Portugal

Dept of Rehabilitation mons L Novarese Hospital Moncrivello Italy

Dokuz Eylul University Konak Izmir Turkey

ESAT STADIUS KU Leuven Leuven 3001 Belgium

Garibaldi Hospital Catania Italy

Hospital Clinico San Carlos Madrid Spain

Hospital de Galdakao Usansolo Galdakao Spain

Hospital Germans Trias i Pujol Badalona Spain

Hospital Universitario Donostia San Sebastain Spain

Hospital Universitario Virgen Macarena Sevilla Spain

IRCCS Mondino Foundation Pavia Italy

Isfahan Neurosciences Research Center Isfahan University of Medical Sciences Isfahan Iran

Jewish General Hospital Montreal Canada

KTU Medical Faculty Farabi Hospital Trabzon Turkey

Mayis University Samsun Turkey

Melbourne MS Centre Department of Neurology Royal Melbourne Hospital Melbourne Australia

Neuro Rive Sud Quebec Canada

Neurologic Clinic and Policlinic MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel University Hospital Basel University of Basel Basel Switzerland

previously at Ospedali Riuniti di Salerno Salerno Italy

Razi Hospital Manouba Tunisia

Rehabilitation and MS Centre Overpelt Hasselt University Hasselt Belgium

University G d'Annunzio Chieti Italy

University Hospital Reina Sofia Cordoba Spain

University Newcastle Newcastle Australia

University of Debrecen Debrecen Hungary

University of Parma Parma Italy

Zuyderland Ziekenhuis Sittard the Netherlands

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025001
003      
CZ-PrNML
005      
20211026134218.0
007      
ta
008      
211013s2021 ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2021.106180 $2 doi
035    __
$a (PubMed)34146771
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a De Brouwer, Edward $u ESAT-STADIUS, KU Leuven, Leuven 3001, Belgium. Electronic address: edward.debrouwer@esat.kuleuven.be
245    10
$a Longitudinal machine learning modeling of MS patient trajectories improves predictions of disability progression / $c E. De Brouwer, T. Becker, Y. Moreau, EK. Havrdova, M. Trojano, S. Eichau, S. Ozakbas, M. Onofrj, P. Grammond, J. Kuhle, L. Kappos, P. Sola, E. Cartechini, J. Lechner-Scott, R. Alroughani, O. Gerlach, T. Kalincik, F. Granella, F. Grand'Maison, R. Bergamaschi, M. José Sá, B. Van Wijmeersch, A. Soysal, JL. Sanchez-Menoyo, C. Solaro, C. Boz, G. Iuliano, K. Buzzard, E. Aguera-Morales, M. Terzi, TC. Trivio, D. Spitaleri, V. Van Pesch, V. Shaygannejad, F. Moore, C. Oreja-Guevara, D. Maimone, R. Gouider, T. Csepany, C. Ramo-Tello, L. Peeters
520    9_
$a BACKGROUND AND OBJECTIVES: Research in Multiple Sclerosis (MS) has recently focused on extracting knowledge from real-world clinical data sources. This type of data is more abundant than data produced during clinical trials and potentially more informative about real-world clinical practice. However, this comes at the cost of less curated and controlled data sets. In this work we aim to predict disability progression by optimally extracting information from longitudinal patient data in the real-world setting, with a special focus on the sporadic sampling problem. METHODS: We use machine learning methods suited for patient trajectories modeling, such as recurrent neural networks and tensor factorization. A subset of 6682 patients from the MSBase registry is used. RESULTS: We can predict disability progression of patients in a two-year horizon with an ROC-AUC of 0.85, which represents a 32% decrease in the ranking pair error (1-AUC) compared to reference methods using static clinical features. CONCLUSIONS: Compared to the models available in the literature, this work uses the most complete patient history for MS disease progression prediction and represents a step forward towards AI-assisted precision medicine in MS.
650    _2
$a lidé $7 D006801
650    12
$a strojové učení $7 D000069550
650    12
$a roztroušená skleróza $7 D009103
650    _2
$a neuronové sítě $7 D016571
655    _2
$a časopisecké články $7 D016428
700    1_
$a Becker, Thijs $u I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium. Electronic address: thijs.becker@uhasselt.be
700    1_
$a Moreau, Yves $u ESAT-STADIUS, KU Leuven, Leuven 3001, Belgium. Electronic address: moreau@esat.kuleuven.be
700    1_
$a Havrdova, Eva Kubala $u Charles University in Prague General University Hospital, Prague, Czech
700    1_
$a Trojano, Maria $u Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari, Bari, Italy
700    1_
$a Eichau, Sara $u Hospital Universitario Virgen Macarena, Sevilla, Spain
700    1_
$a Ozakbas, Serkan $u Dokuz Eylul University, Konak/Izmir, Turkey
700    1_
$a Onofrj, Marco $u University G. d'Annunzio, Chieti, Italy
700    1_
$a Grammond, Pierre $u CISSS Chaudire-Appalache, Levis, Canada
700    1_
$a Kuhle, Jens $u Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
700    1_
$a Kappos, Ludwig $u Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel, University of Basel, Basel, Switzerland
700    1_
$a Sola, Patrizia $u Azienda Ospedaliera Universitaria, Modena, Italy
700    1_
$a Cartechini, Elisabetta $u Azienda Sanitaria Unica Regionale Marche - AV3, Macerata, Italy
700    1_
$a Lechner-Scott, Jeannette $u University Newcastle, Newcastle, Australia
700    1_
$a Alroughani, Raed $u Amiri Hospital, Sharq, Kuwait
700    1_
$a Gerlach, Oliver $u Zuyderland Ziekenhuis, Sittard, the Netherlands
700    1_
$a Kalincik, Tomas $u Melbourne MS Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
700    1_
$a Granella, Franco $u University of Parma, Parma, Italy
700    1_
$a Grand'Maison, Francois $u Neuro Rive-Sud, Quebec, Canada
700    1_
$a Bergamaschi, Roberto $u IRCCS Mondino Foundation, Pavia, Italy
700    1_
$a José Sá, Maria $u Department of Neurology, Centro Hospitalar Universitario de So Joo and University Fernando Pessoa, Porto, Portugal
700    1_
$a Van Wijmeersch, Bart $u Rehabilitation and MS-Centre Overpelt Hasselt University, Hasselt, Belgium
700    1_
$a Soysal, Aysun $u Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul, Turkey
700    1_
$a Sanchez-Menoyo, Jose Luis $u Hospital de Galdakao-Usansolo, Galdakao, Spain
700    1_
$a Solaro, Claudio $u Dept of Rehabilitation mons L Novarese Hospital, Moncrivello, Italy
700    1_
$a Boz, Cavit $u KTU Medical Faculty Farabi Hospital, Trabzon, Turkey
700    1_
$a Iuliano, Gerardo $u previously at Ospedali Riuniti di Salerno, Salerno, Italy
700    1_
$a Buzzard, Katherine $u Box Hill Hospital, Melbourne, Australia
700    1_
$a Aguera-Morales, Eduardo $u University Hospital Reina Sofia, Cordoba, Spain
700    1_
$a Terzi, Murat $u 19 Mayis University, Samsun, Turkey
700    1_
$a Trivio, Tamara Castillo $u Hospital Universitario Donostia, San Sebastain, Spain
700    1_
$a Spitaleri, Daniele $u Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
700    1_
$a Van Pesch, Vincent $u Cliniques Universitaires Saint-Luc, Brussels, Belgium
700    1_
$a Shaygannejad, Vahid $u Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
700    1_
$a Moore, Fraser $u Jewish General Hospital, Montreal, Canada
700    1_
$a Oreja-Guevara, Celia $u Hospital Clinico San Carlos, Madrid, Spain
700    1_
$a Maimone, Davide $u Garibaldi Hospital, Catania, Italy
700    1_
$a Gouider, Riadh $u Razi Hospital, Manouba, Tunisia
700    1_
$a Csepany, Tunde $u University of Debrecen, Debrecen, Hungary
700    1_
$a Ramo-Tello, Cristina $u Hospital Germans Trias i Pujol, Badalona, Spain
700    1_
$a Peeters, Liesbet $u I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium; Department of Immunology, Biomedical Research Institute, Hasselt University, Diepenbeek 3590, Belgium; I-Biostat, Data Science Institute, Hasselt University, Diepenbeek, Belgium. Electronic address: liesbet.peeters@uhasselt.be
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 208, č. - (2021), s. 106180
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34146771 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026134224 $b ABA008
999    __
$a ok $b bmc $g 1714170 $s 1145508
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 208 $c - $d 106180 $e 20210518 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20211013

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...