• Je něco špatně v tomto záznamu ?

Community-Wide Experimental Evaluation of the PROSS Stability-Design Method

Y. Peleg, R. Vincentelli, BM. Collins, KE. Chen, EK. Livingstone, S. Weeratunga, N. Leneva, Q. Guo, K. Remans, K. Perez, GEK. Bjerga, Ø. Larsen, O. Vaněk, O. Skořepa, S. Jacquemin, A. Poterszman, S. Kjær, E. Christodoulou, S. Albeck, O. Dym, E....

. 2021 ; 433 (13) : 166964. [pub] 20210327

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21025528

Grantová podpora
815379 European Research Council - International
FC001999 Cancer Research UK - United Kingdom
FC001999 Medical Research Council - United Kingdom
Wellcome Trust - United Kingdom

Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.

Charité University Medicine Charitéplatz 1 10117 Berlin Germany

Department of Biochemistry Faculty of Science Charles University Hlavova 2030 8 12840 Prague Czech Republic

Department of Biomolecular Sciences Weizmann Institute of Science Rehovot 7610001 Israel

Department of Life Sciences Core Facilities Weizmann Institute of Science Rehovot 7610001 Israel

Elettra Sincrotrone Trieste SS 14 km 163 5 in Area Science Park 34149 Basovizza Trieste Italy

European Molecular Biology Laboratory Protein Expression and Purification Core Facility Meyerhofstrasse 1 69117 Heidelberg Germany

German Center for Cardiovascular Research Partner Site Berlin Berlin Germany

Institut de Génétique et de Biologie Moléculaire et Cellulaire U1258 Université de Strasbourg France

Laboratory for Environmental and Life Sciences University of Nova Gorica Slovenia

Max Delbrück Center for Molecular Medicine Robert Rössle Straße 10 13125 Berlin Buch Germany

Max Planck Institute of Biochemistry Biochemistry Core Facility Am Klopferspitz 18 82152 Martinsried Germany

NORCE Norwegian Research Centre Postboks 22 Nygårdstangen 5038 Bergen Norway

Structural Biology Science Technology Platform The Francis Crick Institute 1 Midland Road London NW1 1AT UK

The University of Queensland Institute for Molecular Bioscience St Lucia Queensland 4072 Australia

Unité Mixte de Recherche Marseille France

University of Lübeck Institute for Biology Ratzeburger Allee 160 23562 Lübeck Germany

Vienna Biocenter Core Facilities GmbH Dr Bohr gasse 3 1030 Vienna Austria

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc21025528
003      
CZ-PrNML
005      
20211026133730.0
007      
ta
008      
211013s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.jmb.2021.166964 $2 doi
035    __
$a (PubMed)33781758
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Peleg, Yoav $u Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel. Electronic address: yoav.peleg@weizmann.ac.il
245    10
$a Community-Wide Experimental Evaluation of the PROSS Stability-Design Method / $c Y. Peleg, R. Vincentelli, BM. Collins, KE. Chen, EK. Livingstone, S. Weeratunga, N. Leneva, Q. Guo, K. Remans, K. Perez, GEK. Bjerga, Ø. Larsen, O. Vaněk, O. Skořepa, S. Jacquemin, A. Poterszman, S. Kjær, E. Christodoulou, S. Albeck, O. Dym, E. Ainbinder, T. Unger, A. Schuetz, S. Matthes, M. Bader, A. de Marco, P. Storici, MS. Semrau, P. Stolt-Bergner, C. Aigner, S. Suppmann, A. Goldenzweig, SJ. Fleishman
520    9_
$a Recent years have seen a dramatic improvement in protein-design methodology. Nevertheless, most methods demand expert intervention, limiting their widespread adoption. By contrast, the PROSS algorithm for improving protein stability and heterologous expression levels has been successfully applied to a range of challenging enzymes and binding proteins. Here, we benchmark the application of PROSS as a stand-alone tool for protein scientists with no or limited experience in modeling. Twelve laboratories from the Protein Production and Purification Partnership in Europe (P4EU) challenged the PROSS algorithm with 14 unrelated protein targets without support from the PROSS developers. For each target, up to six designs were evaluated for expression levels and in some cases, for thermal stability and activity. In nine targets, designs exhibited increased heterologous expression levels either in prokaryotic and/or eukaryotic expression systems under experimental conditions that were tailored for each target protein. Furthermore, we observed increased thermal stability in nine of ten tested targets. In two prime examples, the human Stem Cell Factor (hSCF) and human Cadherin-Like Domain (CLD12) from the RET receptor, the wild type proteins were not expressible as soluble proteins in E. coli, yet the PROSS designs exhibited high expression levels in E. coli and HEK293 cells, respectively, and improved thermal stability. We conclude that PROSS may improve stability and expressibility in diverse cases, and that improvement typically requires target-specific expression conditions. This study demonstrates the strengths of community-wide efforts to probe the generality of new methods and recommends areas for future research to advance practically useful algorithms for protein science.
650    12
$a algoritmy $7 D000465
650    _2
$a zvířata $7 D000818
650    _2
$a Escherichia coli $x metabolismus $7 D004926
650    _2
$a HEK293 buňky $7 D057809
650    _2
$a rychlé screeningové testy $7 D057166
650    _2
$a lidé $7 D006801
650    _2
$a molekulární modely $7 D008958
650    12
$a stabilita proteinů $7 D055550
650    _2
$a proteiny $x chemie $x metabolismus $7 D011506
650    _2
$a rozpustnost $7 D012995
650    _2
$a teplota $7 D013696
650    _2
$a dánio pruhované $7 D015027
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Vincentelli, Renaud $u Unité Mixte de Recherche (UMR) 7257, Centre National de la Recherche Scientifique (CNRS) Aix-Marseille Université, Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, France
700    1_
$a Collins, Brett M $u The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
700    1_
$a Chen, Kai-En $u The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
700    1_
$a Livingstone, Emma K $u The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
700    1_
$a Weeratunga, Saroja $u The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
700    1_
$a Leneva, Natalya $u The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
700    1_
$a Guo, Qian $u The University of Queensland, Institute for Molecular Bioscience, St. Lucia, Queensland 4072, Australia
700    1_
$a Remans, Kim $u European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
700    1_
$a Perez, Kathryn $u European Molecular Biology Laboratory (EMBL), Protein Expression and Purification Core Facility, Meyerhofstrasse 1, 69117 Heidelberg, Germany
700    1_
$a Bjerga, Gro E K $u NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
700    1_
$a Larsen, Øivind $u NORCE Norwegian Research Centre, Postboks 22 Nygårdstangen, 5038 Bergen, Norway
700    1_
$a Vaněk, Ondřej $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
700    1_
$a Skořepa, Ondřej $u Department of Biochemistry, Faculty of Science, Charles University, Hlavova 2030/8, 12840 Prague, Czech Republic
700    1_
$a Jacquemin, Sophie $u Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
700    1_
$a Poterszman, Arnaud $u Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Centre National de la Recherche Scientifique (CNRS), UMR 7104, Institut National de la Santé et de la Recherche Médicale (INSERM), U1258, Université de Strasbourg, France
700    1_
$a Kjær, Svend $u Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
700    1_
$a Christodoulou, Evangelos $u Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
700    1_
$a Albeck, Shira $u Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
700    1_
$a Dym, Orly $u Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
700    1_
$a Ainbinder, Elena $u Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
700    1_
$a Unger, Tamar $u Department of Life Sciences Core Facilities (LSCF), Weizmann Institute of Science, Rehovot 7610001, Israel
700    1_
$a Schuetz, Anja $u Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
700    1_
$a Matthes, Susann $u Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany
700    1_
$a Bader, Michael $u Max-Delbrück Center for Molecular Medicine (MDC), Robert-Rössle-Straße 10, 13125 Berlin-Buch, Germany; University of Lübeck, Institute for Biology, Ratzeburger Allee 160, 23562 Lübeck, Germany; Charité University Medicine, Charitéplatz 1, 10117 Berlin, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
700    1_
$a de Marco, Ario $u Laboratory for Environmental and Life Sciences, University of Nova Gorica, Slovenia
700    1_
$a Storici, Paola $u Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
700    1_
$a Semrau, Marta S $u Elettra Sincrotrone Trieste - SS 14 - km 163, 5 in Area Science Park, 34149 Basovizza, Trieste, Italy
700    1_
$a Stolt-Bergner, Peggy $u Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
700    1_
$a Aigner, Christian $u Vienna Biocenter Core Facilities GmbH, Dr. Bohr-gasse 3, 1030 Vienna, Austria
700    1_
$a Suppmann, Sabine $u Max-Planck Institute of Biochemistry, Biochemistry Core Facility, Am Klopferspitz 18, 82152 Martinsried, Germany
700    1_
$a Goldenzweig, Adi $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
700    1_
$a Fleishman, Sarel J $u Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel. Electronic address: sarel.fleishman@weizmann.ac.il
773    0_
$w MED00002808 $t Journal of molecular biology $x 1089-8638 $g Roč. 433, č. 13 (2021), s. 166964
856    41
$u https://pubmed.ncbi.nlm.nih.gov/33781758 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026133736 $b ABA008
999    __
$a ok $b bmc $g 1714541 $s 1146035
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 433 $c 13 $d 166964 $e 20210327 $i 1089-8638 $m Journal of Molecular Biology $n J Mol Biol $x MED00002808
GRA    __
$a 815379 $p European Research Council $2 International
GRA    __
$a FC001999 $p Cancer Research UK $2 United Kingdom
GRA    __
$a FC001999 $p Medical Research Council $2 United Kingdom
GRA    __
$p Wellcome Trust $2 United Kingdom
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...