-
Je něco špatně v tomto záznamu ?
Identification of regulatory elements required for Stra8 expression in fetal ovarian germ cells of the mouse
CW. Feng, G. Burnet, CM. Spiller, FKM. Cheung, K. Chawengsaksophak, P. Koopman, J. Bowles
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Free Medical Journals
od 1953 do Před 6 měsíci
Open Access Digital Library
od 1953-03-01 do Před 6 měsíci
PubMed
33574039
DOI
10.1242/dev.194977
Knihovny.cz E-zdroje
- MeSH
- adaptorové proteiny signální transdukční genetika metabolismus MeSH
- CRISPR-Cas systémy genetika MeSH
- meióza MeSH
- mutageneze MeSH
- myši inbrední C57BL MeSH
- myši transgenní MeSH
- myši MeSH
- ovarium cytologie metabolismus MeSH
- plod cytologie metabolismus MeSH
- promotorové oblasti (genetika) MeSH
- regulace genové exprese účinky léků MeSH
- regulační oblasti nukleových kyselin genetika MeSH
- retinoidní X receptory genetika metabolismus MeSH
- transkripční faktory genetika metabolismus farmakologie MeSH
- tretinoin farmakologie MeSH
- vazebná místa MeSH
- vývoj plodu genetika MeSH
- zárodečné buňky cytologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In mice, the entry of germ cells into meiosis crucially depends on the expression of stimulated by retinoic acid gene 8 (Stra8). Stra8 is expressed specifically in pre-meiotic germ cells of females and males, at fetal and postnatal stages, respectively, but the mechanistic details of its spatiotemporal regulation are yet to be defined. In particular, there has been considerable debate regarding whether retinoic acid is required, in vivo, to initiate Stra8 expression in the mouse fetal ovary. We show that the distinctive anterior-to-posterior pattern of Stra8 initiation, characteristic of germ cells in the fetal ovary, is faithfully recapitulated when 2.9 kb of the Stra8 promoter is used to drive eGFP expression. Using in vitro transfection assays of cutdown and mutant constructs, we identified two functional retinoic acid responsive elements (RAREs) within this 2.9 kb regulatory element. We also show that the transcription factor DMRT1 enhances Stra8 expression, but only in the presence of RA and the most proximal RARE. Finally, we used CRISPR/Cas9-mediated targeted mutation studies to demonstrate that both RAREs are required for optimal Stra8 expression levels in vivo.
Institute for Molecular Bioscience The University of Queensland Brisbane Queensland 4072 Australia
School of Biomedical Sciences The University of Queensland Brisbane Queensland 4072 Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21025972
- 003
- CZ-PrNML
- 005
- 20211026133328.0
- 007
- ta
- 008
- 211013s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1242/dev.194977 $2 doi
- 035 __
- $a (PubMed)33574039
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Feng, Chun-Wei $u School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia $u Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- 245 10
- $a Identification of regulatory elements required for Stra8 expression in fetal ovarian germ cells of the mouse / $c CW. Feng, G. Burnet, CM. Spiller, FKM. Cheung, K. Chawengsaksophak, P. Koopman, J. Bowles
- 520 9_
- $a In mice, the entry of germ cells into meiosis crucially depends on the expression of stimulated by retinoic acid gene 8 (Stra8). Stra8 is expressed specifically in pre-meiotic germ cells of females and males, at fetal and postnatal stages, respectively, but the mechanistic details of its spatiotemporal regulation are yet to be defined. In particular, there has been considerable debate regarding whether retinoic acid is required, in vivo, to initiate Stra8 expression in the mouse fetal ovary. We show that the distinctive anterior-to-posterior pattern of Stra8 initiation, characteristic of germ cells in the fetal ovary, is faithfully recapitulated when 2.9 kb of the Stra8 promoter is used to drive eGFP expression. Using in vitro transfection assays of cutdown and mutant constructs, we identified two functional retinoic acid responsive elements (RAREs) within this 2.9 kb regulatory element. We also show that the transcription factor DMRT1 enhances Stra8 expression, but only in the presence of RA and the most proximal RARE. Finally, we used CRISPR/Cas9-mediated targeted mutation studies to demonstrate that both RAREs are required for optimal Stra8 expression levels in vivo.
- 650 _2
- $a adaptorové proteiny signální transdukční $x genetika $x metabolismus $7 D048868
- 650 _2
- $a zvířata $7 D000818
- 650 _2
- $a vazebná místa $7 D001665
- 650 _2
- $a CRISPR-Cas systémy $x genetika $7 D064113
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a vývoj plodu $x genetika $7 D047109
- 650 _2
- $a plod $x cytologie $x metabolismus $7 D005333
- 650 _2
- $a regulace genové exprese $x účinky léků $7 D005786
- 650 _2
- $a zárodečné buňky $x cytologie $x metabolismus $7 D005854
- 650 _2
- $a meióza $7 D008540
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a myši inbrední C57BL $7 D008810
- 650 _2
- $a myši transgenní $7 D008822
- 650 _2
- $a mutageneze $7 D016296
- 650 _2
- $a ovarium $x cytologie $x metabolismus $7 D010053
- 650 _2
- $a promotorové oblasti (genetika) $7 D011401
- 650 _2
- $a regulační oblasti nukleových kyselin $x genetika $7 D012045
- 650 _2
- $a retinoidní X receptory $x genetika $x metabolismus $7 D047488
- 650 _2
- $a transkripční faktory $x genetika $x metabolismus $x farmakologie $7 D014157
- 650 _2
- $a tretinoin $x farmakologie $7 D014212
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Burnet, Guillaume $u School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- 700 1_
- $a Spiller, Cassy M $u School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia $u Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- 700 1_
- $a Cheung, Fiona Ka Man $u School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
- 700 1_
- $a Chawengsaksophak, Kallayanee $u Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia $u Institute of Molecular Genetics of the Czech Academy of Sciences, v.v.i. Vídenská 1083, 4 14220 Prague, Czech Republic
- 700 1_
- $a Koopman, Peter $u Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- 700 1_
- $a Bowles, Josephine $u School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia jo.bowles@uq.edu.au $u Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- 773 0_
- $w MED00001363 $t Development (Cambridge, England) $x 1477-9129 $g Roč. 148, č. 5 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33574039 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026133334 $b ABA008
- 999 __
- $a ok $b bmc $g 1714858 $s 1146479
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 148 $c 5 $e 20210309 $i 1477-9129 $m Development $n Development $x MED00001363
- LZP __
- $a Pubmed-20211013