-
Something wrong with this record ?
Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria
S. Gandhi, RP. Baker, S. Cho, S. Stanchev, K. Strisovsky, S. Urban
Language English Country United States
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.
Grant support
P41 GM103485
NIGMS NIH HHS - United States
R01 AI066025
NIAID NIH HHS - United States
R01 AI110925
NIAID NIH HHS - United States
- MeSH
- Amides chemical synthesis chemistry pharmacology MeSH
- Antimalarials chemical synthesis chemistry pharmacology MeSH
- HEK293 Cells MeSH
- Protease Inhibitors chemical synthesis chemistry pharmacology MeSH
- Boronic Acids chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Malaria blood drug therapy metabolism MeSH
- Molecular Structure MeSH
- Parasitic Sensitivity Tests MeSH
- Peptides chemical synthesis chemistry pharmacology MeSH
- Plasmodium falciparum drug effects metabolism MeSH
- Peptide Hydrolases blood metabolism MeSH
- Proteolysis drug effects MeSH
- Protozoan Proteins antagonists & inhibitors blood metabolism MeSH
- Drug Design * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Rhomboid intramembrane proteases regulate pathophysiological processes, but their targeting in a disease context has never been achieved. We decoded the atypical substrate specificity of malaria rhomboid PfROM4, but found, unexpectedly, that it results from "steric exclusion": PfROM4 and canonical rhomboid proteases cannot cleave each other's substrates due to reciprocal juxtamembrane steric clashes. Instead, we engineered an optimal sequence that enhanced proteolysis >10-fold, and solved high-resolution structures to discover that boronates enhance inhibition >100-fold. A peptide boronate modeled on our "super-substrate" carrying one "steric-excluding" residue inhibited PfROM4 but not human rhomboid proteolysis. We further screened a library to discover an orthogonal alpha-ketoamide that potently inhibited PfROM4 but not human rhomboid proteolysis. Despite the membrane-immersed target and rapid invasion, ultrastructural analysis revealed that single-dosing blood-stage malaria cultures blocked host-cell invasion and cleared parasitemia. These observations establish a strategy for designing parasite-selective rhomboid inhibitors and expose a druggable dependence on rhomboid proteolysis in non-motile parasites.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026413
- 003
- CZ-PrNML
- 005
- 20211026132924.0
- 007
- ta
- 008
- 211013s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.chembiol.2020.08.011 $2 doi
- 035 __
- $a (PubMed)32888502
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Gandhi, Shiv $u Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
- 245 10
- $a Designed Parasite-Selective Rhomboid Inhibitors Block Invasion and Clear Blood-Stage Malaria / $c S. Gandhi, RP. Baker, S. Cho, S. Stanchev, K. Strisovsky, S. Urban
- 520 9_
- $a Rhomboid intramembrane proteases regulate pathophysiological processes, but their targeting in a disease context has never been achieved. We decoded the atypical substrate specificity of malaria rhomboid PfROM4, but found, unexpectedly, that it results from "steric exclusion": PfROM4 and canonical rhomboid proteases cannot cleave each other's substrates due to reciprocal juxtamembrane steric clashes. Instead, we engineered an optimal sequence that enhanced proteolysis >10-fold, and solved high-resolution structures to discover that boronates enhance inhibition >100-fold. A peptide boronate modeled on our "super-substrate" carrying one "steric-excluding" residue inhibited PfROM4 but not human rhomboid proteolysis. We further screened a library to discover an orthogonal alpha-ketoamide that potently inhibited PfROM4 but not human rhomboid proteolysis. Despite the membrane-immersed target and rapid invasion, ultrastructural analysis revealed that single-dosing blood-stage malaria cultures blocked host-cell invasion and cleared parasitemia. These observations establish a strategy for designing parasite-selective rhomboid inhibitors and expose a druggable dependence on rhomboid proteolysis in non-motile parasites.
- 650 _2
- $a amidy $x chemická syntéza $x chemie $x farmakologie $7 D000577
- 650 _2
- $a antimalarika $x chemická syntéza $x chemie $x farmakologie $7 D000962
- 650 _2
- $a kyseliny boronové $x chemická syntéza $x chemie $x farmakologie $7 D001897
- 650 12
- $a racionální návrh léčiv $7 D015195
- 650 _2
- $a HEK293 buňky $7 D057809
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a malárie $x krev $x farmakoterapie $x metabolismus $7 D008288
- 650 _2
- $a molekulární struktura $7 D015394
- 650 _2
- $a parazitické testy citlivosti $7 D021261
- 650 _2
- $a proteasy $x krev $x metabolismus $7 D010447
- 650 _2
- $a peptidy $x chemická syntéza $x chemie $x farmakologie $7 D010455
- 650 _2
- $a Plasmodium falciparum $x účinky léků $x metabolismus $7 D010963
- 650 _2
- $a inhibitory proteas $x chemická syntéza $x chemie $x farmakologie $7 D011480
- 650 _2
- $a proteolýza $x účinky léků $7 D059748
- 650 _2
- $a protozoální proteiny $x antagonisté a inhibitory $x krev $x metabolismus $7 D015800
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Baker, Rosanna P $u Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
- 700 1_
- $a Cho, Sangwoo $u Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA
- 700 1_
- $a Stanchev, Stancho $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 160 00, Czechia
- 700 1_
- $a Strisovsky, Kvido $u Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo n. 2, Prague 160 00, Czechia
- 700 1_
- $a Urban, Siniša $u Department of Molecular Biology & Genetics, Johns Hopkins University School of Medicine, Room 507 PCTB, 725 North Wolfe Street, Baltimore, MD 21205, USA. Electronic address: rhomboidprotease@gmail.com
- 773 0_
- $w MED00195160 $t Cell chemical biology $x 2451-9448 $g Roč. 27, č. 11 (2020), s. 1410-1424.e6
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32888502 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026132930 $b ABA008
- 999 __
- $a ok $b bmc $g 1715204 $s 1146920
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 27 $c 11 $d 1410-1424.e6 $e 20200903 $i 2451-9448 $m Cell chemical biology $n Cell Chem Biol $x MED00195160
- GRA __
- $a P41 GM103485 $p NIGMS NIH HHS $2 United States
- GRA __
- $a R01 AI066025 $p NIAID NIH HHS $2 United States
- GRA __
- $a R01 AI110925 $p NIAID NIH HHS $2 United States
- LZP __
- $a Pubmed-20211013