Detail
Článek
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

The Impact of Plasma Membrane Lipid Composition on Flagellum-Mediated Adhesion of Enterohemorrhagic Escherichia coli

H. Cazzola, L. Lemaire, S. Acket, E. Prost, L. Duma, M. Erhardt, P. Čechová, P. Trouillas, F. Mohareb, C. Rossi, Y. Rossez

. 2020 ; 5 (5) : . [pub] 20200916

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc21026557

Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell's plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions.IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.

000      
00000naa a2200000 a 4500
001      
bmc21026557
003      
CZ-PrNML
005      
20211026132815.0
007      
ta
008      
211013s2020 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1128/mSphere.00702-20 $2 doi
035    __
$a (PubMed)32938696
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Cazzola, Hélène $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
245    14
$a The Impact of Plasma Membrane Lipid Composition on Flagellum-Mediated Adhesion of Enterohemorrhagic Escherichia coli / $c H. Cazzola, L. Lemaire, S. Acket, E. Prost, L. Duma, M. Erhardt, P. Čechová, P. Trouillas, F. Mohareb, C. Rossi, Y. Rossez
520    9_
$a Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a major cause of foodborne gastrointestinal illness. The adhesion of EHEC to host tissues is the first step enabling bacterial colonization. Adhesins such as fimbriae and flagella mediate this process. Here, we studied the interaction of the bacterial flagellum with the host cell's plasma membrane using giant unilamellar vesicles (GUVs) as a biologically relevant model. Cultured cell lines contain many different molecular components, including proteins and glycoproteins. In contrast, with GUVs, we can characterize the bacterial mode of interaction solely with a defined lipid part of the cell membrane. Bacterial adhesion on GUVs was dependent on the presence of the flagellar filament and its motility. By testing different phospholipid head groups, the nature of the fatty acid chains, or the liposome curvature, we found that lipid packing is a key parameter to enable bacterial adhesion. Using HT-29 cells grown in the presence of polyunsaturated fatty acid (α-linolenic acid) or saturated fatty acid (palmitic acid), we found that α-linolenic acid reduced adhesion of wild-type EHEC but not of a nonflagellated mutant. Finally, our results reveal that the presence of flagella is advantageous for the bacteria to bind to lipid rafts. We speculate that polyunsaturated fatty acids prevent flagellar adhesion on membrane bilayers and play a clear role for optimal host colonization. Flagellum-mediated adhesion to plasma membranes has broad implications for host-pathogen interactions.IMPORTANCE Bacterial adhesion is a crucial step to allow bacteria to colonize their hosts, invade tissues, and form biofilm. Enterohemorrhagic Escherichia coli O157:H7 is a human pathogen and the causative agent of diarrhea and hemorrhagic colitis. Here, we use biomimetic membrane models and cell lines to decipher the impact of lipid content of the plasma membrane on enterohemorrhagic E. coli flagellum-mediated adhesion. Our findings provide evidence that polyunsaturated fatty acid (α-linolenic acid) inhibits E. coli flagellar adhesion to the plasma membrane in a mechanism separate from its antimicrobial and anti-inflammatory functions. In addition, we confirm that cholesterol-enriched lipid microdomains, often called lipid rafts, are important in bacterial adhesion. These findings demonstrate that plasma membrane adhesion via bacterial flagella play a significant role for an important human pathogen. This mechanism represents a promising target for the development of novel antiadhesion therapies.
650    12
$a bakteriální adheze $7 D001422
650    _2
$a buněčné linie $7 D002460
650    _2
$a buněčná membrána $x chemie $7 D002462
650    _2
$a epitelové buňky $x mikrobiologie $7 D004847
650    _2
$a Escherichia coli O157 $x fyziologie $7 D019453
650    _2
$a flagella $x metabolismus $7 D005407
650    _2
$a buňky HT-29 $7 D019073
650    12
$a interakce hostitele a patogenu $7 D054884
650    _2
$a lidé $7 D006801
650    _2
$a membránové mikrodomény $x chemie $7 D021962
650    _2
$a kyselina palmitová $x analýza $7 D019308
650    _2
$a fosfolipidy $x analýza $7 D010743
650    _2
$a unilamelární lipozómy $x chemie $7 D053835
650    _2
$a kyselina alfa-linolenová $x analýza $7 D017962
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Lemaire, Laurine $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
700    1_
$a Acket, Sébastien $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
700    1_
$a Prost, Elise $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
700    1_
$a Duma, Luminita $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France
700    1_
$a Erhardt, Marc $u Institute for Biology-Bacterial Physiology, Humboldt-Universität zu Berlin, Berlin, Germany
700    1_
$a Čechová, Petra $u RCPTM, Palacký University Olomouc, Olomouc, Czech Republic
700    1_
$a Trouillas, Patrick $u RCPTM, Palacký University Olomouc, Olomouc, Czech Republic $u INSERM U1248-IPPRITT, University of Limoges, Limoges, France
700    1_
$a Mohareb, Fady $u The Bioinformatics Group, School of Water, Energy and Environment, Cranfield University, Cranfield, United Kingdom
700    1_
$a Rossi, Claire $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France claire.rossi@utc.fr yannick.rossez@utc.fr
700    1_
$a Rossez, Yannick $u Université de Technologie de Compiègne, UPJV, UMR CNRS 7025, Enzyme and Cell Engineering, Centre de recherche Royallieu, Compiègne, France claire.rossi@utc.fr yannick.rossez@utc.fr
773    0_
$w MED00190572 $t mSphere $x 2379-5042 $g Roč. 5, č. 5 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32938696 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20211013 $b ABA008
991    __
$a 20211026132821 $b ABA008
999    __
$a ok $b bmc $g 1715322 $s 1147064
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 5 $c 5 $e 20200916 $i 2379-5042 $m mSphere $n mSphere $x MED00190572
LZP    __
$a Pubmed-20211013

Najít záznam

Citační ukazatele

Nahrávání dat...

Možnosti archivace

Nahrávání dat...