-
Je něco špatně v tomto záznamu ?
Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity
I. Zhernov, S. Diez, M. Braun, Z. Lansky
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Cell Press Free Archives
od 1995-01-01 do Před 1 rokem
Free Medical Journals
od 1995 do Před 1 rokem
- MeSH
- aparát dělícího vřeténka fyziologie MeSH
- cytokineze * MeSH
- kineziny chemie genetika metabolismus MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- onkogenní proteiny chemie genetika metabolismus MeSH
- vazba proteinů MeSH
- vnitřně neuspořádané proteiny chemie genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
B CUBE Center for Molecular Bioengineering TU Dresden Tatzberg 41 01307 Dresden Germany
Cluster of Excellence Physics of Life TU Dresden Tatzberg 47 49 01307 Dresden Germany
Faculty of Mathematics and Physics Charles University Ke Karlovu 3 121 16 Prague Czech Republic
Max Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstr 108 Dresden 01307 Germany
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc21026564
- 003
- CZ-PrNML
- 005
- 20211026132812.0
- 007
- ta
- 008
- 211013s2020 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cub.2020.06.039 $2 doi
- 035 __
- $a (PubMed)32649913
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Zhernov, Ilia $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
- 245 10
- $a Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity / $c I. Zhernov, S. Diez, M. Braun, Z. Lansky
- 520 9_
- $a In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
- 650 12
- $a cytokineze $7 D048749
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a vnitřně neuspořádané proteiny $x chemie $x genetika $x metabolismus $7 D064267
- 650 _2
- $a kineziny $x chemie $x genetika $x metabolismus $7 D016547
- 650 _2
- $a mikrotubuly $x metabolismus $7 D008870
- 650 _2
- $a onkogenní proteiny $x chemie $x genetika $x metabolismus $7 D015513
- 650 _2
- $a vazba proteinů $7 D011485
- 650 _2
- $a aparát dělícího vřeténka $x fyziologie $7 D008941
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Diez, Stefan $u B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany
- 700 1_
- $a Braun, Marcus $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic. Electronic address: marcus.braun@ibt.cas.cz
- 700 1_
- $a Lansky, Zdenek $u Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic. Electronic address: zdenek.lansky@ibt.cas.cz
- 773 0_
- $w MED00006482 $t Current biology : CB $x 1879-0445 $g Roč. 30, č. 17 (2020), s. 3342-3351.e5
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32649913 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20211013 $b ABA008
- 991 __
- $a 20211026132818 $b ABA008
- 999 __
- $a ok $b bmc $g 1715329 $s 1147071
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 30 $c 17 $d 3342-3351.e5 $e 20200709 $i 1879-0445 $m Current biology $n Curr Biol $x MED00006482
- LZP __
- $a Pubmed-20211013