Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR

M. Králík, O. Klíma, M. Čuta, RM. Malina, S. Kozieł, L. Polcerová, A. Škultétyová, M. Španěl, L. Kukla, P. Zemčík

. 2021 ; 8 (10) : . [pub] 20211018

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22001524

Grantová podpora
TL01000394 Technology Agency of the Czech Republic

A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22001524
003      
CZ-PrNML
005      
20220112153630.0
007      
ta
008      
220107s2021 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/children8100934 $2 doi
035    __
$a (PubMed)34682199
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Králík, Miroslav $u Department of Anthropology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
245    10
$a Estimating Growth in Height from Limited Longitudinal Growth Data Using Full-Curves Training Dataset: A Comparison of Two Procedures of Curve Optimization-Functional Principal Component Analysis and SITAR / $c M. Králík, O. Klíma, M. Čuta, RM. Malina, S. Kozieł, L. Polcerová, A. Škultétyová, M. Španěl, L. Kukla, P. Zemčík
520    9_
$a A variety of models are available for the estimation of parameters of the human growth curve. Several have been widely and successfully used with longitudinal data that are reasonably complete. On the other hand, the modeling of data for a limited number of observation points is problematic and requires the interpolation of the interval between points and often an extrapolation of the growth trajectory beyond the range of empirical limits (prediction). This study tested a new approach for fitting a relatively limited number of longitudinal data using the normal variation of human empirical growth curves. First, functional principal components analysis was done for curve phase and amplitude using complete and dense data sets for a reference sample (Brno Growth Study). Subsequently, artificial curves were generated with a combination of 12 of the principal components and applied for fitting to the newly analyzed data with the Levenberg-Marquardt optimization algorithm. The approach was tested on seven 5-points/year longitudinal data samples of adolescents extracted from the reference sample. The samples differed in their distance from the mean age at peak velocity for the sample and were tested by a permutation leave-one-out approach. The results indicated the potential of this method for growth modeling as a user-friendly application for practical applications in pediatrics, auxology and youth sport.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Klíma, Ondřej $u IT4Innovations Centre of Excellence, Brno University of Technology, 612 00 Brno, Czech Republic
700    1_
$a Čuta, Martin $u Department of Anthropology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
700    1_
$a Malina, Robert M $u Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712-1415, USA $u School of Public Health and Information Sciences, University of Louisville, Louisville, KY 40202, USA
700    1_
$a Kozieł, Sławomir $u Department of Anthropology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
700    1_
$a Polcerová, Lenka $u Department of Anthropology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
700    1_
$a Škultétyová, Anna $u Department of Anthropology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
700    1_
$a Španěl, Michal $u IT4Innovations Centre of Excellence, Brno University of Technology, 612 00 Brno, Czech Republic
700    1_
$a Kukla, Lubomír $u Outpatient Primary Care Pediatric Center, 625 00 Brno, Czech Republic
700    1_
$a Zemčík, Pavel $u IT4Innovations Centre of Excellence, Brno University of Technology, 612 00 Brno, Czech Republic
773    0_
$w MED00198716 $t Children (Basel, Switzerland) $x 2227-9067 $g Roč. 8, č. 10 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34682199 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20220107 $b ABA008
991    __
$a 20220112153626 $b ABA008
999    __
$a ind $b bmc $g 1745514 $s 1152671
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 8 $c 10 $e 20211018 $i 2227-9067 $m Children $n Children (Basel) $x MED00198716
GRA    __
$a TL01000394 $p Technology Agency of the Czech Republic
LZP    __
$a Pubmed-20220107

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...