-
Je něco špatně v tomto záznamu ?
Self-supervised pretraining for transferable quantitative phase image cell segmentation
T. Vicar, J. Chmelik, R. Jakubicek, L. Chmelikova, J. Gumulec, J. Balvan, I. Provaznik, R. Kolar
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2010
PubMed Central
od 2010
Europe PubMed Central
od 2010
Open Access Digital Library
od 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
PubMed
34745753
DOI
10.1364/boe.433212
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22001695
- 003
- CZ-PrNML
- 005
- 20250507102612.0
- 007
- ta
- 008
- 220107s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1364/BOE.433212 $2 doi
- 035 __
- $a (PubMed)34745753
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Vicar, Tomas $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 245 10
- $a Self-supervised pretraining for transferable quantitative phase image cell segmentation / $c T. Vicar, J. Chmelik, R. Jakubicek, L. Chmelikova, J. Gumulec, J. Balvan, I. Provaznik, R. Kolar
- 520 9_
- $a In this paper, a novel U-Net-based method for robust adherent cell segmentation for quantitative phase microscopy image is designed and optimised. We designed and evaluated four specific post-processing pipelines. To increase the transferability to different cell types, non-deep learning transfer with adjustable parameters is used in the post-processing step. Additionally, we proposed a self-supervised pretraining technique using nonlabelled data, which is trained to reconstruct multiple image distortions and improved the segmentation performance from 0.67 to 0.70 of object-wise intersection over union. Moreover, we publish a new dataset of manually labelled images suitable for this task together with the unlabelled data for self-supervised pretraining.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Chmelík, Jiří $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $7 xx0331819
- 700 1_
- $a Jakubicek, Roman $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Chmelikova, Larisa $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Gumulec, Jaromir $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Balvan, Jan $u Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- 700 1_
- $a Provaznik, Ivo $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Kolar, Radim $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic
- 773 0_
- $w MED00189502 $t Biomedical optics express $x 2156-7085 $g Roč. 12, č. 10 (2021), s. 6514-6528
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34745753 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20220107 $b ABA008
- 991 __
- $a 20250507102610 $b ABA008
- 999 __
- $a ind $b bmc $g 1745577 $s 1152842
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 12 $c 10 $d 6514-6528 $e 20210924 $i 2156-7085 $m Biomedical optics express $n Biomed Opt Express $x MED00189502
- LZP __
- $a Pubmed-20220107