• Je něco špatně v tomto záznamu ?

Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations

M. Padariya, S. Kote, M. Mayordomo, I. Dapic, J. Alfaro, T. Hupp, R. Fahraeus, U. Kalathiya

. 2021 ; 19 (-) : 5072-5091. [pub] 20210909

Jazyk angličtina Země Nizozemsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22001741

The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22001741
003      
CZ-PrNML
005      
20220112153710.0
007      
ta
008      
220107s2021 ne f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.csbj.2021.09.006 $2 doi
035    __
$a (PubMed)34589184
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ne
100    1_
$a Padariya, Monikaben $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
245    10
$a Structural determinants of peptide-dependent TAP1-TAP2 transit passage targeted by viral proteins and altered by cancer-associated mutations / $c M. Padariya, S. Kote, M. Mayordomo, I. Dapic, J. Alfaro, T. Hupp, R. Fahraeus, U. Kalathiya
520    9_
$a The TAP1-TAP2 complex transports antigenic peptide substrates into the endoplasmic reticulum (ER). In ER, the peptides are further processed and loaded on the major histocompatibility class (MHC) I molecules by the peptide loading complex (PLC). The TAP transporters are linked with the PLC; a target for cancers and viral immune evasion. But the mechanisms whereby the cancer-derived mutations in TAP1-TAP2 or viral factors targeting the PLC, interfere peptide transport are only emerging. This study describes that transit of peptides through TAP can take place via two different channels (4 or 8 helices) depending on peptide length and sequence. Molecular dynamics and binding affinity predictions of peptide-transporters demonstrated that smaller peptides (8-10 mers; e.g. AAGIGILTV, SIINFEKL) can transport quickly through the transport tunnel compared to longer peptides (15-mer; e.g. ENPVVHFFKNIVTPR). In line with a regulated and selective peptide transport by TAPs, the immunopeptidome upon IFN-γ treatment in melanoma cells induced the shorter length (9-mer) peptide presentation over MHC-I that exhibit a relatively weak binding affinity with TAP. A conserved distance between N and C terminus residues of the studied peptides in the transport tunnel were reported. Furthermore, by adversely interacting with the TAP transport passage or affecting TAPNBD domains tilt movement, the viral proteins and cancer-derived mutations in TAP1-TAP2 may induce allosteric effects in TAP that block conformation of the tunnel (closed towards ER lumen). Interestingly, some cancer-associated mutations (e.g. TAP1R372Q and TAP2R373H) can specifically interfere with selective transport channels (i.e. for longer-peptides). These results provide a model for how viruses and cancer-associated mutations targeting TAP interfaces can affect MHC-I antigen presentation, and how the IFN-γ pathway alters MHC-I antigen presentation via the kinetics of peptide transport.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kote, Sachin $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
700    1_
$a Mayordomo, Marcos $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
700    1_
$a Dapic, Irena $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
700    1_
$a Alfaro, Javier $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland $u Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
700    1_
$a Hupp, Ted $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland $u Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland EH4 2XR, United Kingdom
700    1_
$a Fahraeus, Robin $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland $u Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010 Paris, France $u Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden $u RECAMO, Masaryk Memorial Cancer Institute, Zlutykopec 7, 65653 Brno, Czech Republic
700    1_
$a Kalathiya, Umesh $u International Centre for Cancer Vaccine Science, University of Gdansk, ul. Kładki 24, 80-822 Gdansk, Poland
773    0_
$w MED00184782 $t Computational and structural biotechnology journal $x 2001-0370 $g Roč. 19, č. - (2021), s. 5072-5091
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34589184 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20220107 $b ABA008
991    __
$a 20220112153706 $b ABA008
999    __
$a ind $b bmc $g 1745597 $s 1152888
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 19 $c - $d 5072-5091 $e 20210909 $i 2001-0370 $m Computational and structural biotechnology journal $n Comput Struct Biotechnol J $x MED00184782
LZP    __
$a Pubmed-20220107

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace