• Je něco špatně v tomto záznamu ?

A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images

S. Jain, A. Seal, A. Ojha, A. Yazidi, J. Bures, I. Tacheci, O. Krejcar

. 2021 ; 137 (-) : 104789. [pub] 20210825

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003557

Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model 'WCENet' is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003557
003      
CZ-PrNML
005      
20220127150114.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2021.104789 $2 doi
035    __
$a (PubMed)34455302
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Jain, Samir $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India
245    12
$a A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images / $c S. Jain, A. Seal, A. Ojha, A. Yazidi, J. Bures, I. Tacheci, O. Krejcar
520    9_
$a Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model 'WCENet' is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications.
650    _2
$a algoritmy $7 D000465
650    12
$a kapslová endoskopie $7 D053704
650    _2
$a počítačové zpracování obrazu $7 D007091
650    _2
$a strojové učení $7 D000069550
650    _2
$a neuronové sítě (počítačové) $7 D016571
650    _2
$a ROC křivka $7 D012372
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Seal, Ayan $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India. Electronic address: ayan@iiitdmj.ac.in
700    1_
$a Ojha, Aparajita $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India
700    1_
$a Yazidi, Anis $u Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway; Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
700    1_
$a Bures, Jan $u Second Department of Internal Medicine-Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
700    1_
$a Tacheci, Ilja $u Second Department of Internal Medicine-Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
700    1_
$a Krejcar, Ondrej $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka 1249, Hradec Kralove, 50003, Czech Republic; Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 137, č. - (2021), s. 104789
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34455302 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150110 $b ABA008
999    __
$a ok $b bmc $g 1751119 $s 1154706
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 137 $c - $d 104789 $e 20210825 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...