-
Je něco špatně v tomto záznamu ?
A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images
S. Jain, A. Seal, A. Ojha, A. Yazidi, J. Bures, I. Tacheci, O. Krejcar
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
ProQuest Central
od 2003-01-01 do 2023-12-31
Nursing & Allied Health Database (ProQuest)
od 2003-01-01 do 2023-12-31
Health & Medicine (ProQuest)
od 2003-01-01 do 2023-12-31
- MeSH
- algoritmy MeSH
- kapslová endoskopie * MeSH
- neuronové sítě (počítačové) MeSH
- počítačové zpracování obrazu MeSH
- ROC křivka MeSH
- strojové učení MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model 'WCENet' is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications.
Department of Computer Science Norwegian University of Science and Technology Trondheim Norway
Department of Computer Science OsloMet Oslo Metropolitan University Oslo Norway
Department of Plastic and Reconstructive Surgery Oslo University Hospital Oslo Norway
PDPM Indian Institute of Information Technology Design and Manufacturing Jabalpur 482005 India
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003557
- 003
- CZ-PrNML
- 005
- 20220127150114.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.compbiomed.2021.104789 $2 doi
- 035 __
- $a (PubMed)34455302
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Jain, Samir $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India
- 245 12
- $a A deep CNN model for anomaly detection and localization in wireless capsule endoscopy images / $c S. Jain, A. Seal, A. Ojha, A. Yazidi, J. Bures, I. Tacheci, O. Krejcar
- 520 9_
- $a Wireless capsule endoscopy (WCE) is one of the most efficient methods for the examination of gastrointestinal tracts. Computer-aided intelligent diagnostic tools alleviate the challenges faced during manual inspection of long WCE videos. Several approaches have been proposed in the literature for the automatic detection and localization of anomalies in WCE images. Some of them focus on specific anomalies such as bleeding, polyp, lesion, etc. However, relatively fewer generic methods have been proposed to detect all those common anomalies simultaneously. In this paper, a deep convolutional neural network (CNN) based model 'WCENet' is proposed for anomaly detection and localization in WCE images. The model works in two phases. In the first phase, a simple and efficient attention-based CNN classifies an image into one of the four categories: polyp, vascular, inflammatory, or normal. If the image is classified in one of the abnormal categories, it is processed in the second phase for the anomaly localization. Fusion of Grad-CAM++ and a custom SegNet is used for anomalous region segmentation in the abnormal image. WCENet classifier attains accuracy and area under receiver operating characteristic of 98% and 99%. The WCENet segmentation model obtains a frequency weighted intersection over union of 81%, and an average dice score of 56% on the KID dataset. WCENet outperforms nine different state-of-the-art conventional machine learning and deep learning models on the KID dataset. The proposed model demonstrates potential for clinical applications.
- 650 _2
- $a algoritmy $7 D000465
- 650 12
- $a kapslová endoskopie $7 D053704
- 650 _2
- $a počítačové zpracování obrazu $7 D007091
- 650 _2
- $a strojové učení $7 D000069550
- 650 _2
- $a neuronové sítě (počítačové) $7 D016571
- 650 _2
- $a ROC křivka $7 D012372
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Seal, Ayan $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India. Electronic address: ayan@iiitdmj.ac.in
- 700 1_
- $a Ojha, Aparajita $u PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, 482005, India
- 700 1_
- $a Yazidi, Anis $u Department of Computer Science, OsloMet - Oslo Metropolitan University, Oslo, Norway; Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway; Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway
- 700 1_
- $a Bures, Jan $u Second Department of Internal Medicine-Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
- 700 1_
- $a Tacheci, Ilja $u Second Department of Internal Medicine-Gastroenterology, Charles University, Faculty of Medicine in Hradec Kralove and University Hospital Hradec Kralove, Sokolska 581, Hradec Kralove, 50005, Czech Republic
- 700 1_
- $a Krejcar, Ondrej $u Center for Basic and Applied Research, Faculty of Informatics and Management, University of Hradec Kralove, Hradecka 1249, Hradec Kralove, 50003, Czech Republic; Malaysia Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia
- 773 0_
- $w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 137, č. - (2021), s. 104789
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34455302 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127150110 $b ABA008
- 999 __
- $a ok $b bmc $g 1751119 $s 1154706
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 137 $c - $d 104789 $e 20210825 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
- LZP __
- $a Pubmed-20220113