Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data

O. Kodym, M. Španěl, A. Herout

. 2021 ; 137 (-) : 104766. [pub] 20210814

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003558

Correct virtual reconstruction of a defective skull is a prerequisite for successful cranioplasty and its automatization has the potential for accelerating and standardizing the clinical workflow. This work provides a deep learning-based method for the reconstruction of a skull shape and cranial implant design on clinical data of patients indicated for cranioplasty. The method is based on a cascade of multi-branch volumetric CNNs that enables simultaneous training on two different types of cranioplasty ground-truth data: the skull patch, which represents the exact shape of the missing part of the original skull, and which can be easily created artificially from healthy skulls, and expert-designed cranial implant shapes that are much harder to acquire. The proposed method reaches an average surface distance of the reconstructed skull patches of 0.67 mm on a clinical test set of 75 defective skulls. It also achieves a 12% reduction of a newly proposed defect border Gaussian curvature error metric, compared to a baseline model trained on synthetic data only. Additionally, it produces directly 3D printable cranial implant shapes with a Dice coefficient 0.88 and a surface error of 0.65 mm. The outputs of the proposed skull reconstruction method reach good quality and can be considered for use in semi- or fully automatic clinical cranial implant design workflows.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003558
003      
CZ-PrNML
005      
20220127150113.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2021.104766 $2 doi
035    __
$a (PubMed)34425418
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Kodym, Oldřich $u Department of Computer Graphics and Multimedia, Brno University of Technology, Božetěchova 2, 612 66, Brno, Czech Republic. Electronic address: ikodym@fit.vutbr.cz
245    10
$a Deep learning for cranioplasty in clinical practice: Going from synthetic to real patient data / $c O. Kodym, M. Španěl, A. Herout
520    9_
$a Correct virtual reconstruction of a defective skull is a prerequisite for successful cranioplasty and its automatization has the potential for accelerating and standardizing the clinical workflow. This work provides a deep learning-based method for the reconstruction of a skull shape and cranial implant design on clinical data of patients indicated for cranioplasty. The method is based on a cascade of multi-branch volumetric CNNs that enables simultaneous training on two different types of cranioplasty ground-truth data: the skull patch, which represents the exact shape of the missing part of the original skull, and which can be easily created artificially from healthy skulls, and expert-designed cranial implant shapes that are much harder to acquire. The proposed method reaches an average surface distance of the reconstructed skull patches of 0.67 mm on a clinical test set of 75 defective skulls. It also achieves a 12% reduction of a newly proposed defect border Gaussian curvature error metric, compared to a baseline model trained on synthetic data only. Additionally, it produces directly 3D printable cranial implant shapes with a Dice coefficient 0.88 and a surface error of 0.65 mm. The outputs of the proposed skull reconstruction method reach good quality and can be considered for use in semi- or fully automatic clinical cranial implant design workflows.
650    12
$a deep learning $7 D000077321
650    _2
$a lidé $7 D006801
650    _2
$a protézy a implantáty $7 D019736
650    12
$a zákroky plastické chirurgie $7 D019651
650    _2
$a lebka $x diagnostické zobrazování $x chirurgie $7 D012886
655    _2
$a časopisecké články $7 D016428
700    1_
$a Španěl, Michal $u Department of Computer Graphics and Multimedia, Brno University of Technology, Božetěchova 2, 612 66, Brno, Czech Republic
700    1_
$a Herout, Adam $u Department of Computer Graphics and Multimedia, Brno University of Technology, Božetěchova 2, 612 66, Brno, Czech Republic
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 137, č. - (2021), s. 104766
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34425418 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127150109 $b ABA008
999    __
$a ok $b bmc $g 1751120 $s 1154707
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 137 $c - $d 104766 $e 20210814 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...