-
Je něco špatně v tomto záznamu ?
The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology
J. Chen, M. Cheng, GF. Salgado, P. Stadlbauer, X. Zhang, S. Amrane, A. Guédin, F. He, J. Šponer, H. Ju, JL. Mergny, J. Zhou
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
PubMed
34379785
DOI
10.1093/nar/gkab681
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- DNA genetika ultrastruktura MeSH
- G-kvadruplexy * MeSH
- konformace nukleové kyseliny MeSH
- nukleotidy chemie genetika MeSH
- oligonukleotidy chemie genetika MeSH
- polymorfismus genetický genetika MeSH
- RNA genetika ultrastruktura MeSH
- simulace molekulární dynamiky MeSH
- vodíková vazba MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the 'flanking effect' in this work. This 'flanking effect' was more pronounced when nucleotides were added at the 5'-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5'-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22003701
- 003
- CZ-PrNML
- 005
- 20220127145949.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1093/nar/gkab681 $2 doi
- 035 __
- $a (PubMed)34379785
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Chen, Jielin $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- 245 14
- $a The beginning and the end: flanking nucleotides induce a parallel G-quadruplex topology / $c J. Chen, M. Cheng, GF. Salgado, P. Stadlbauer, X. Zhang, S. Amrane, A. Guédin, F. He, J. Šponer, H. Ju, JL. Mergny, J. Zhou
- 520 9_
- $a Genomic sequences susceptible to form G-quadruplexes (G4s) are always flanked by other nucleotides, but G4 formation in vitro is generally studied with short synthetic DNA or RNA oligonucleotides, for which bases adjacent to the G4 core are often omitted. Herein, we systematically studied the effects of flanking nucleotides on structural polymorphism of 371 different oligodeoxynucleotides that adopt intramolecular G4 structures. We found out that the addition of nucleotides favors the formation of a parallel fold, defined as the 'flanking effect' in this work. This 'flanking effect' was more pronounced when nucleotides were added at the 5'-end, and depended on loop arrangement. NMR experiments and molecular dynamics simulations revealed that flanking sequences at the 5'-end abolish a strong syn-specific hydrogen bond commonly found in non-parallel conformations, thus favoring a parallel topology. These analyses pave a new way for more accurate prediction of DNA G4 folding in a physiological context.
- 650 _2
- $a cirkulární dichroismus $7 D002942
- 650 _2
- $a DNA $x genetika $x ultrastruktura $7 D004247
- 650 12
- $a G-kvadruplexy $7 D054856
- 650 _2
- $a vodíková vazba $7 D006860
- 650 _2
- $a simulace molekulární dynamiky $7 D056004
- 650 _2
- $a konformace nukleové kyseliny $7 D009690
- 650 _2
- $a nukleotidy $x chemie $x genetika $7 D009711
- 650 _2
- $a oligonukleotidy $x chemie $x genetika $7 D009841
- 650 _2
- $a polymorfismus genetický $x genetika $7 D011110
- 650 _2
- $a RNA $x genetika $x ultrastruktura $7 D012313
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Cheng, Mingpan $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China $u ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
- 700 1_
- $a Salgado, Gilmar F $u ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
- 700 1_
- $a Stadlbauer, Petr $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27,783 71, Olomouc - Holice, Czech Republic
- 700 1_
- $a Zhang, Xiaobo $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- 700 1_
- $a Amrane, Samir $u ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
- 700 1_
- $a Guédin, Aurore $u ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France
- 700 1_
- $a He, Fangni $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- 700 1_
- $a Šponer, Jiří $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic $u Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc, Šlechtitelů 241/27,783 71, Olomouc - Holice, Czech Republic
- 700 1_
- $a Ju, Huangxian $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- 700 1_
- $a Mergny, Jean-Louis $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China $u ARNA Laboratory, Université de Bordeaux, Inserm U1212, CNRS UMR5320, IECB, Pessac33607, France $u Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 612 65 Brno, Czech Republic $u Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS, Inserm, Institut Polytechnique de Paris, 91128Palaiseau cedex, France
- 700 1_
- $a Zhou, Jun $u State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing210023, China
- 773 0_
- $w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 49, č. 16 (2021), s. 9548-9559
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34379785 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145945 $b ABA008
- 999 __
- $a ok $b bmc $g 1751223 $s 1154850
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 49 $c 16 $d 9548-9559 $e 20210920 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
- LZP __
- $a Pubmed-20220113