• Je něco špatně v tomto záznamu ?

TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation

J. Ramos-Méndez, JA. LaVerne, N. Domínguez-Kondo, J. Milligan, V. Štěpán, K. Stefanová, Y. Perrot, C. Villagrasa, WG. Shin, S. Incerti, A. McNamara, H. Paganetti, J. Perl, J. Schuemann, B. Faddegon

. 2021 ; 66 (17) : . [pub] 20210903

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc22003771

Grantová podpora
R01 CA187003 NCI NIH HHS - United States

The chemical stage of the Monte Carlo track-structure simulation code Geant4-DNA has been revised and validated. The root-mean-square (RMS) empirical parameter that dictates the displacement of water molecules after an ionization and excitation event in Geant4-DNA has been shortened to better fit experimental data. The pre-defined dissociation channels and branching ratios were not modified, but the reaction rate coefficients for simulating the chemical stage of water radiolysis were updated. The evaluation of Geant4-DNA was accomplished with TOPAS-nBio. For that, we compared predicted time-dependentGvalues in pure liquid water for·OH, e-aq, and H2with published experimental data. For H2O2and H·, simulation of added scavengers at different concentrations resulted in better agreement with measurements. In addition, DNA geometry information was integrated with chemistry simulation in TOPAS-nBio to realize reactions between radiolytic chemical species and DNA. This was used in the estimation of the yield of single-strand breaks (SSB) induced by137Csγ-ray radiolysis of supercoiled pUC18 plasmids dissolved in aerated solutions containing DMSO. The efficiency of SSB induction by reaction between radiolytic species and DNA used in the simulation was chosen to provide the best agreement with published measurements. An RMS displacement of 1.24 nm provided agreement with measured data within experimental uncertainties for time-dependentGvalues and under the presence of scavengers. SSB efficiencies of 24% and 0.5% for·OH and H·, respectively, led to an overall agreement of TOPAS-nBio results within experimental uncertainties. The efficiencies obtained agreed with values obtained with published non-homogeneous kinetic model and step-by-step Monte Carlo simulations but disagreed by 12% with published direct measurements. Improvement of the spatial resolution of the DNA damage model might mitigate such disagreement. In conclusion, with these improvements, Geant4-DNA/TOPAS-nBio provides a fast, accurate, and user-friendly tool for simulating DNA damage under low linear energy transfer irradiation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22003771
003      
CZ-PrNML
005      
20220127145859.0
007      
ta
008      
220113s2021 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1361-6560/ac1f39 $2 doi
035    __
$a (PubMed)34412044
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Ramos-Méndez, J $u Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, United States of America
245    10
$a TOPAS-nBio validation for simulating water radiolysis and DNA damage under low-LET irradiation / $c J. Ramos-Méndez, JA. LaVerne, N. Domínguez-Kondo, J. Milligan, V. Štěpán, K. Stefanová, Y. Perrot, C. Villagrasa, WG. Shin, S. Incerti, A. McNamara, H. Paganetti, J. Perl, J. Schuemann, B. Faddegon
520    9_
$a The chemical stage of the Monte Carlo track-structure simulation code Geant4-DNA has been revised and validated. The root-mean-square (RMS) empirical parameter that dictates the displacement of water molecules after an ionization and excitation event in Geant4-DNA has been shortened to better fit experimental data. The pre-defined dissociation channels and branching ratios were not modified, but the reaction rate coefficients for simulating the chemical stage of water radiolysis were updated. The evaluation of Geant4-DNA was accomplished with TOPAS-nBio. For that, we compared predicted time-dependentGvalues in pure liquid water for·OH, e-aq, and H2with published experimental data. For H2O2and H·, simulation of added scavengers at different concentrations resulted in better agreement with measurements. In addition, DNA geometry information was integrated with chemistry simulation in TOPAS-nBio to realize reactions between radiolytic chemical species and DNA. This was used in the estimation of the yield of single-strand breaks (SSB) induced by137Csγ-ray radiolysis of supercoiled pUC18 plasmids dissolved in aerated solutions containing DMSO. The efficiency of SSB induction by reaction between radiolytic species and DNA used in the simulation was chosen to provide the best agreement with published measurements. An RMS displacement of 1.24 nm provided agreement with measured data within experimental uncertainties for time-dependentGvalues and under the presence of scavengers. SSB efficiencies of 24% and 0.5% for·OH and H·, respectively, led to an overall agreement of TOPAS-nBio results within experimental uncertainties. The efficiencies obtained agreed with values obtained with published non-homogeneous kinetic model and step-by-step Monte Carlo simulations but disagreed by 12% with published direct measurements. Improvement of the spatial resolution of the DNA damage model might mitigate such disagreement. In conclusion, with these improvements, Geant4-DNA/TOPAS-nBio provides a fast, accurate, and user-friendly tool for simulating DNA damage under low linear energy transfer irradiation.
650    _2
$a počítačová simulace $7 D003198
650    12
$a poškození DNA $7 D004249
650    _2
$a lineární přenos energie $7 D018499
650    _2
$a metoda Monte Carlo $7 D009010
650    12
$a voda $7 D014867
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a validační studie $7 D023361
700    1_
$a LaVerne, J A $u Radiation Laboratory and Department of Physics, University of Notre Dame, Notre Dame, IN 46556, United States of America
700    1_
$a Domínguez-Kondo, N $u Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72000, Mexico
700    1_
$a Milligan, J $u Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, 92350, United States of America
700    1_
$a Štěpán, V $u Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Stefanová, K $u Department of Radiation Dosimetry, Nuclear Physics Institute of the Czech Academy of Sciences, Prague, Czech Republic
700    1_
$a Perrot, Y $u Laboratoire de Dosimétrie des Rayonnements Ionisants, Institut de Radioprotection et Sûreté Nucléaire, Fontenay aux Roses, BP. 17, F-92262, France
700    1_
$a Villagrasa, C $u Laboratoire de Dosimétrie des Rayonnements Ionisants, Institut de Radioprotection et Sûreté Nucléaire, Fontenay aux Roses, BP. 17, F-92262, France
700    1_
$a Shin, W-G $u Department of Radiation Oncology, Seoul National University Hospital, Seoul 03080, Republic of Korea
700    1_
$a Incerti, S $u Univ. Bordeaux, CNRS, CENBG, UMR 5797, F-33170 Gradignan, France
700    1_
$a McNamara, A $u Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
700    1_
$a Paganetti, H $u Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
700    1_
$a Perl, J $u SLAC National Accelerator Laboratory, Menlo Park, CA, United States of America
700    1_
$a Schuemann, J $u Department of Radiation Oncology, Physics Division, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
700    1_
$a Faddegon, B $u Department of Radiation Oncology, University of California San Francisco, San Francisco, CA 94115, United States of America
773    0_
$w MED00003821 $t Physics in medicine and biology $x 1361-6560 $g Roč. 66, č. 17 (2021)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34412044 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145856 $b ABA008
999    __
$a ok $b bmc $g 1751279 $s 1154920
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 66 $c 17 $e 20210903 $i 1361-6560 $m Physics in medicine and biology $n Phys Med Biol $x MED00003821
GRA    __
$a R01 CA187003 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...