-
Je něco špatně v tomto záznamu ?
Parameter estimation for discretely observed linear birth-and-death processes
AC. Davison, S. Hautphenne, A. Kraus
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
GJ17-22950Y
Grantová Agentura České Republiky
DE150101044
Australian Research Council
PubMed
32306397
DOI
10.1111/biom.13282
Knihovny.cz E-zdroje
- MeSH
- populační dynamika MeSH
- sčítání lidu * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Birth-and-death processes are widely used to model the development of biological populations. Although they are relatively simple models, their parameters can be challenging to estimate, as the likelihood can become numerically unstable when data arise from the most common sampling schemes, such as annual population censuses. A further difficulty arises when the discrete observations are not equi-spaced, for example, when census data are unavailable for some years. We present two approaches to estimating the birth, death, and growth rates of a discretely observed linear birth-and-death process: via an embedded Galton-Watson process and by maximizing a saddlepoint approximation to the likelihood. We study asymptotic properties of the estimators, compare them on numerical examples, and apply the methodology to data on monitored populations.
Department of Mathematics and Statistics Masaryk University Brno Czech Republic
School of Mathematics and Statistics The University of Melbourne Melbourne Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004562
- 003
- CZ-PrNML
- 005
- 20220127145144.0
- 007
- ta
- 008
- 220113s2021 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1111/biom.13282 $2 doi
- 035 __
- $a (PubMed)32306397
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Davison, A C $u Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, EPFL-FSB-MATH-STAT, Lausanne, Switzerland
- 245 10
- $a Parameter estimation for discretely observed linear birth-and-death processes / $c AC. Davison, S. Hautphenne, A. Kraus
- 520 9_
- $a Birth-and-death processes are widely used to model the development of biological populations. Although they are relatively simple models, their parameters can be challenging to estimate, as the likelihood can become numerically unstable when data arise from the most common sampling schemes, such as annual population censuses. A further difficulty arises when the discrete observations are not equi-spaced, for example, when census data are unavailable for some years. We present two approaches to estimating the birth, death, and growth rates of a discretely observed linear birth-and-death process: via an embedded Galton-Watson process and by maximizing a saddlepoint approximation to the likelihood. We study asymptotic properties of the estimators, compare them on numerical examples, and apply the methodology to data on monitored populations.
- 650 12
- $a sčítání lidu $7 D019352
- 650 _2
- $a populační dynamika $7 D011157
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hautphenne, S $u Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, EPFL-FSB-MATH-STAT, Lausanne, Switzerland $u School of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia
- 700 1_
- $a Kraus, A $u Department of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
- 773 0_
- $w MED00000765 $t Biometrics $x 1541-0420 $g Roč. 77, č. 1 (2021), s. 186-196
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32306397 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145140 $b ABA008
- 999 __
- $a ok $b bmc $g 1751880 $s 1155711
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 77 $c 1 $d 186-196 $e 20200508 $i 1541-0420 $m Biometrics $n Biometrics $x MED00000765
- GRA __
- $a GJ17-22950Y $p Grantová Agentura České Republiky
- GRA __
- $a DE150101044 $p Australian Research Council
- LZP __
- $a Pubmed-20220113