• Je něco špatně v tomto záznamu ?

Migration Stimulating Factor (MSF): Its Role in the Tumour Microenvironment

AM. Schor, AM. Woolston, K. Kankova, K. Harada, LE. Aljorani, S. Perrier, PA. Felts, RP. Keatch, SL. Schor

. 2021 ; 1329 (-) : 351-397. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22004678

Migration Stimulating Factor (MSF) is a 70 kDa truncated isoform of fibronectin (FN); its mRNA is generated from the FN gene by an unusual two-stage processing. Unlike full-length FN, MSF is not a matrix molecule but a soluble protein which displays cytokine-like activities not displayed by any other FN isoform due to steric hindrance. There are two isoforms of MSF; these are referred to as MSF+aa and MSF-aa, while the term MSF is used to include both.MSF was first identified as a motogen secreted by foetal and cancer-associated fibroblasts in tissue culture. It is also produced by sprouting (angiogenic) endothelial cells, tumour cells and activated macrophages. Keratinocytes and resting endothelial cells secrete inhibitors of MSF that have been identified as NGAL and IGFBP-7, respectively. MSF+aa and MSF-aa show distinct functionality in that only MSF+aa is inhibited by NGAL.MSF is present in 70-80% of all tumours examined, expressed by the tumour cells as well as by fibroblasts, endothelial cells and macrophages in the tumour microenvironment (TME). High MSF expression is associated with tumour progression and poor prognosis in all tumours examined, including breast carcinomas, non-small cell lung cancer (NSCLC), salivary gland tumours (SGT) and oral squamous cell carcinomas (OSCC). Epithelial and stromal MSF carry independent prognostic value. MSF is also expressed systemically in cancer patients, being detected in serum and produced by fibroblast from distal uninvolved skin. MSF-aa is the main isoform associated with cancer, whereas MSF+aa may be expressed by both normal and malignant tissues.The expression of MSF is not invariant; it may be switched on and off in a reversible manner, which requires precise interactions between soluble factors present in the TME and the extracellular matrix in contact with the cells. MSF expression in fibroblasts may be switched on by a transient exposure to several molecules, including TGFβ1 and MSF itself, indicating an auto-inductive capacity.Acting by both paracrine and autocrine mechanisms, MSF stimulates cell migration/invasion, induces angiogenesis and cell differentiation and alters the matrix and cellular composition of the TME. MSF is also a survival factor for sprouting endothelial cells. IGD tri- and tetra-peptides mimic the motogenic and angiogenic activities of MSF, with both molecules inhibiting AKT activity and requiring αvβ3 functionality. MSF is active at unprecedently low concentrations in a manner which is target cell specific. Thus, different bioactive motifs and extracellular matrix requirements apply to fibroblasts, endothelial cells and tumour cells. Unlike other motogenic and angiogenic factors, MSF does not affect cell proliferation but it stimulates tumour growth through its angiogenic effect and downstream mechanisms.The epithelial-stromal pattern of expression and range of bioactivities displayed puts MSF in the unique position of potentially promoting tumour progression from both the "seed" and the "soil" perspectives.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22004678
003      
CZ-PrNML
005      
20220127145050.0
007      
ta
008      
220113s2021 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1007/978-3-030-73119-9_18 $2 doi
035    __
$a (PubMed)34664248
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Schor, A M $u School of Science and Engineering, University of Dundee, Dundee, UK
245    10
$a Migration Stimulating Factor (MSF): Its Role in the Tumour Microenvironment / $c AM. Schor, AM. Woolston, K. Kankova, K. Harada, LE. Aljorani, S. Perrier, PA. Felts, RP. Keatch, SL. Schor
520    9_
$a Migration Stimulating Factor (MSF) is a 70 kDa truncated isoform of fibronectin (FN); its mRNA is generated from the FN gene by an unusual two-stage processing. Unlike full-length FN, MSF is not a matrix molecule but a soluble protein which displays cytokine-like activities not displayed by any other FN isoform due to steric hindrance. There are two isoforms of MSF; these are referred to as MSF+aa and MSF-aa, while the term MSF is used to include both.MSF was first identified as a motogen secreted by foetal and cancer-associated fibroblasts in tissue culture. It is also produced by sprouting (angiogenic) endothelial cells, tumour cells and activated macrophages. Keratinocytes and resting endothelial cells secrete inhibitors of MSF that have been identified as NGAL and IGFBP-7, respectively. MSF+aa and MSF-aa show distinct functionality in that only MSF+aa is inhibited by NGAL.MSF is present in 70-80% of all tumours examined, expressed by the tumour cells as well as by fibroblasts, endothelial cells and macrophages in the tumour microenvironment (TME). High MSF expression is associated with tumour progression and poor prognosis in all tumours examined, including breast carcinomas, non-small cell lung cancer (NSCLC), salivary gland tumours (SGT) and oral squamous cell carcinomas (OSCC). Epithelial and stromal MSF carry independent prognostic value. MSF is also expressed systemically in cancer patients, being detected in serum and produced by fibroblast from distal uninvolved skin. MSF-aa is the main isoform associated with cancer, whereas MSF+aa may be expressed by both normal and malignant tissues.The expression of MSF is not invariant; it may be switched on and off in a reversible manner, which requires precise interactions between soluble factors present in the TME and the extracellular matrix in contact with the cells. MSF expression in fibroblasts may be switched on by a transient exposure to several molecules, including TGFβ1 and MSF itself, indicating an auto-inductive capacity.Acting by both paracrine and autocrine mechanisms, MSF stimulates cell migration/invasion, induces angiogenesis and cell differentiation and alters the matrix and cellular composition of the TME. MSF is also a survival factor for sprouting endothelial cells. IGD tri- and tetra-peptides mimic the motogenic and angiogenic activities of MSF, with both molecules inhibiting AKT activity and requiring αvβ3 functionality. MSF is active at unprecedently low concentrations in a manner which is target cell specific. Thus, different bioactive motifs and extracellular matrix requirements apply to fibroblasts, endothelial cells and tumour cells. Unlike other motogenic and angiogenic factors, MSF does not affect cell proliferation but it stimulates tumour growth through its angiogenic effect and downstream mechanisms.The epithelial-stromal pattern of expression and range of bioactivities displayed puts MSF in the unique position of potentially promoting tumour progression from both the "seed" and the "soil" perspectives.
650    12
$a nemalobuněčný karcinom plic $7 D002289
650    _2
$a cytokiny $7 D016207
650    _2
$a endoteliální buňky $7 D042783
650    _2
$a lidé $7 D006801
650    12
$a nádory plic $7 D008175
650    _2
$a nádorové mikroprostředí $7 D059016
655    _2
$a časopisecké články $7 D016428
700    1_
$a Woolston, A M $u School of Dentistry, University of Dundee, Dundee, UK
700    1_
$a Kankova, K $u Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
700    1_
$a Harada, K $u Department of Oral and Maxillofacial Surgery, Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
700    1_
$a Aljorani, L E $u School of Dentistry, University of Dundee, Dundee, UK
700    1_
$a Perrier, S $u School of Dentistry, University of Dundee, Dundee, UK
700    1_
$a Felts, P A $u School of Science and Engineering, University of Dundee, Dundee, UK
700    1_
$a Keatch, R P $u School of Science and Engineering, University of Dundee, Dundee, UK
700    1_
$a Schor, S L $u School of Science and Engineering, University of Dundee, Dundee, UK
773    0_
$w MED00008501 $t Advances in experimental medicine and biology $x 0065-2598 $g Roč. 1329, č. - (2021), s. 351-397
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34664248 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220113 $b ABA008
991    __
$a 20220127145046 $b ABA008
999    __
$a ok $b bmc $g 1751983 $s 1155827
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2021 $b 1329 $c - $d 351-397 $e - $i 0065-2598 $m Advances in experimental medicine and biology $n Adv Exp Med Biol $x MED00008501
LZP    __
$a Pubmed-20220113

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...