-
Je něco špatně v tomto záznamu ?
False memories for scenes using the DRM paradigm
F. Děchtěrenko, J. Lukavský, J. Štipl
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Elsevier Open Access Journals
od 1995-10-01 do 2022-12-31
Elsevier Open Archive Journals
od 1995-10-01 do Před 18 měsíci
- MeSH
- lidé MeSH
- neuronové sítě (počítačové) MeSH
- paměť * MeSH
- rozpomínání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
People are remarkably good at remembering photographs. To further investigate the nature of the stored representations and the fidelity of human memories, it would be useful to evaluate the visual similarity of stimuli presented in experiments. Here, we explored the possible use of convolutional neural networks (CNN) as a measure of perceptual or representational similarity of visual scenes with respect to visual memory research. In Experiment 1, we presented participants with sets of nine images from the same scene category and tested whether they were able to detect the most distant scene in the image space defined by CNN. Experiment 2 was a visual variant of the Deese-Roediger-McDermott paradigm. We asked participants to remember a set of photographs from the same scene category. The photographs were preselected based on their distance to a particular visual prototype (defined as centroid of the image space). In the recognition test, we observed higher false alarm rates for scenes closer to this visual prototype. Our findings show that the similarity measured by CNN is reflected in human behavior: people can detect odd-one-out scenes or be lured to false alarms with similar stimuli. This method can be used for further studies regarding visual memory for complex scenes.
Faculty of Arts Charles University Celetná 20 110 00 Prague Czech Republic
Institute of Psychology Czech Academy of Sciences Hybernská 8 110 00 Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004750
- 003
- CZ-PrNML
- 005
- 20220127145024.0
- 007
- ta
- 008
- 220113s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.visres.2020.09.009 $2 doi
- 035 __
- $a (PubMed)33113436
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Děchtěrenko, Filip $u Institute of Psychology, Czech Academy of Sciences, Hybernská 8, 110 00 Prague, Czech Republic; Faculty of Arts, Charles University, Celetná 20, 110 00 Prague, Czech Republic. Electronic address: dechterenko@praha.psu.cas.cz
- 245 10
- $a False memories for scenes using the DRM paradigm / $c F. Děchtěrenko, J. Lukavský, J. Štipl
- 520 9_
- $a People are remarkably good at remembering photographs. To further investigate the nature of the stored representations and the fidelity of human memories, it would be useful to evaluate the visual similarity of stimuli presented in experiments. Here, we explored the possible use of convolutional neural networks (CNN) as a measure of perceptual or representational similarity of visual scenes with respect to visual memory research. In Experiment 1, we presented participants with sets of nine images from the same scene category and tested whether they were able to detect the most distant scene in the image space defined by CNN. Experiment 2 was a visual variant of the Deese-Roediger-McDermott paradigm. We asked participants to remember a set of photographs from the same scene category. The photographs were preselected based on their distance to a particular visual prototype (defined as centroid of the image space). In the recognition test, we observed higher false alarm rates for scenes closer to this visual prototype. Our findings show that the similarity measured by CNN is reflected in human behavior: people can detect odd-one-out scenes or be lured to false alarms with similar stimuli. This method can be used for further studies regarding visual memory for complex scenes.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a paměť $7 D008568
- 650 12
- $a rozpomínání $7 D011939
- 650 _2
- $a neuronové sítě (počítačové) $7 D016571
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Lukavský, Jiří $u Institute of Psychology, Czech Academy of Sciences, Hybernská 8, 110 00 Prague, Czech Republic; Faculty of Arts, Charles University, Celetná 20, 110 00 Prague, Czech Republic
- 700 1_
- $a Štipl, Jiří $u Faculty of Arts, Charles University, Celetná 20, 110 00 Prague, Czech Republic
- 773 0_
- $w MED00004667 $t Vision research $x 1878-5646 $g Roč. 178, č. - (2021), s. 48-59
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/33113436 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145021 $b ABA008
- 999 __
- $a ok $b bmc $g 1752050 $s 1155899
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 178 $c - $d 48-59 $e 20201023 $i 1878-5646 $m Vision research $n Vision Res $x MED00004667
- LZP __
- $a Pubmed-20220113