-
Je něco špatně v tomto záznamu ?
Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines
J. Kopal, A. Pidnebesna, D. Tomeček, J. Tintěra, J. Hlinka
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-01251S
Grantová Agentura České Republiky
LO1611
Ministerstvo Školství, Mládeže a Tělovýchovy
NLK
Directory of Open Access Journals
od 2020
PubMed Central
od 1998
Medline Complete (EBSCOhost)
od 2012-07-01
Wiley-Blackwell Open Access Titles
od 2020
ROAD: Directory of Open Access Scholarly Resources
od 1993
PubMed
32881215
DOI
10.1002/hbm.25195
Knihovny.cz E-zdroje
- MeSH
- artefakty MeSH
- atlasy jako téma * MeSH
- datové soubory jako téma * MeSH
- dospělí MeSH
- hlava - pohyby MeSH
- konektom * metody normy MeSH
- lidé MeSH
- magnetická rezonanční tomografie * metody normy MeSH
- mladý dospělý MeSH
- mozek diagnostické zobrazování fyziologie MeSH
- počítačové zpracování obrazu * metody normy MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Functional connectivity analysis of resting-state fMRI data has recently become one of the most common approaches to characterizing individual brain function. It has been widely suggested that the functional connectivity matrix is a useful approximate representation of the brain's connectivity, potentially providing behaviorally or clinically relevant markers. However, functional connectivity estimates are known to be detrimentally affected by various artifacts, including those due to in-scanner head motion. Moreover, as individual functional connections generally covary only very weakly with head motion estimates, motion influence is difficult to quantify robustly, and prone to be neglected in practice. Although the use of individual estimates of head motion, or group-level correlation of motion and functional connectivity has been suggested, a sufficiently sensitive measure of individual functional connectivity quality has not yet been established. We propose a new intuitive summary index, Typicality of Functional Connectivity, to capture deviations from standard brain functional connectivity patterns. In a resting-state fMRI dataset of 245 healthy subjects, this measure was significantly correlated with individual head motion metrics. The results were further robustly reproduced across atlas granularity, preprocessing options, and other datasets, including 1,081 subjects from the Human Connectome Project. In principle, Typicality of Functional Connectivity should be sensitive also to other types of artifacts, processing errors, and possibly also brain pathology, allowing extensive use in data quality screening and quantification in functional connectivity studies as well as methodological investigations.
Centre de Recherche Cerveau et Cognition Universite Paul Sabatier Toulouse France
Faculty of Electrical Engineering Czech Technical University Prague Czech Republic
Institute for Clinical and Experimental Medicine Prague Czech Republic
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22004757
- 003
- CZ-PrNML
- 005
- 20220127145018.0
- 007
- ta
- 008
- 220113s2020 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/hbm.25195 $2 doi
- 035 __
- $a (PubMed)32881215
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Kopal, Jakub $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $u Department of Computing and Control Engineering, University of Chemistry and Technology, Prague, Czech Republic $u Centre de Recherche Cerveau et Cognition, Universite Paul Sabatier, Toulouse, France
- 245 10
- $a Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines / $c J. Kopal, A. Pidnebesna, D. Tomeček, J. Tintěra, J. Hlinka
- 520 9_
- $a Functional connectivity analysis of resting-state fMRI data has recently become one of the most common approaches to characterizing individual brain function. It has been widely suggested that the functional connectivity matrix is a useful approximate representation of the brain's connectivity, potentially providing behaviorally or clinically relevant markers. However, functional connectivity estimates are known to be detrimentally affected by various artifacts, including those due to in-scanner head motion. Moreover, as individual functional connections generally covary only very weakly with head motion estimates, motion influence is difficult to quantify robustly, and prone to be neglected in practice. Although the use of individual estimates of head motion, or group-level correlation of motion and functional connectivity has been suggested, a sufficiently sensitive measure of individual functional connectivity quality has not yet been established. We propose a new intuitive summary index, Typicality of Functional Connectivity, to capture deviations from standard brain functional connectivity patterns. In a resting-state fMRI dataset of 245 healthy subjects, this measure was significantly correlated with individual head motion metrics. The results were further robustly reproduced across atlas granularity, preprocessing options, and other datasets, including 1,081 subjects from the Human Connectome Project. In principle, Typicality of Functional Connectivity should be sensitive also to other types of artifacts, processing errors, and possibly also brain pathology, allowing extensive use in data quality screening and quantification in functional connectivity studies as well as methodological investigations.
- 650 _2
- $a dospělí $7 D000328
- 650 _2
- $a artefakty $7 D016477
- 650 12
- $a atlasy jako téma $7 D001271
- 650 _2
- $a mozek $x diagnostické zobrazování $x fyziologie $7 D001921
- 650 12
- $a konektom $x metody $x normy $7 D063132
- 650 12
- $a datové soubory jako téma $7 D066264
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a hlava - pohyby $7 D019416
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a počítačové zpracování obrazu $x metody $x normy $7 D007091
- 650 12
- $a magnetická rezonanční tomografie $x metody $x normy $7 D008279
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a mladý dospělý $7 D055815
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Pidnebesna, Anna $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $u National Institute of Mental Health, Klecany, Czech Republic $u Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
- 700 1_
- $a Tomeček, David $u National Institute of Mental Health, Klecany, Czech Republic $u Faculty of Electrical Engineering, Czech Technical University, Prague, Czech Republic
- 700 1_
- $a Tintěra, Jaroslav $u National Institute of Mental Health, Klecany, Czech Republic $u Institute for Clinical and Experimental Medicine, Prague, Czech Republic
- 700 1_
- $a Hlinka, Jaroslav $u Institute of Computer Science of the Czech Academy of Sciences, Prague, Czech Republic $u National Institute of Mental Health, Klecany, Czech Republic
- 773 0_
- $w MED00002066 $t Human brain mapping $x 1097-0193 $g Roč. 41, č. 18 (2020), s. 5325-5340
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/32881215 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220113 $b ABA008
- 991 __
- $a 20220127145015 $b ABA008
- 999 __
- $a ok $b bmc $g 1752057 $s 1155906
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2020 $b 41 $c 18 $d 5325-5340 $e 20200902 $i 1097-0193 $m Human brain mapping $n Hum Brain Mapp $x MED00002066
- GRA __
- $a 17-01251S $p Grantová Agentura České Republiky
- GRA __
- $a LO1611 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- LZP __
- $a Pubmed-20220113