• Je něco špatně v tomto záznamu ?

A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment

K. Vocetkova, V. Sovkova, M. Buzgo, V. Lukasova, R. Divin, M. Rampichova, P. Blazek, T. Zikmund, J. Kaiser, Z. Karpisek, E. Amler, E. Filova

. 2020 ; 10 (9) : . [pub] 20200910

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22008522

Grantová podpora
LO1508 Ministerstvo Školství, Mládeže a Tělovýchovy
CZ.2.16/3.1.00/21528 Ministerstvo Školství, Mládeže a Tělovýchovy
CEITEC 2020 (LQ1601) Ministerstvo Školství, Mládeže a Tělovýchovy
LM2018110 CzechNanoLab Research Infrastructure
17-32285A Agentura Pro Zdravotnický Výzkum České Republiky
NV17-32285A MZ0 CEP - Centrální evidence projektů

Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22008522
003      
CZ-PrNML
005      
20230116115603.0
007      
ta
008      
220324s2020 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/nano10091801 $2 doi
035    __
$a (PubMed)32927642
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Vocetková, Karolína $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $u Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic $u University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic $1 https://orcid.org/0000000256640109 $7 xx0255511
245    12
$a A Simple Drug Delivery System for Platelet-Derived Bioactive Molecules, to Improve Melanocyte Stimulation in Vitiligo Treatment / $c K. Vocetkova, V. Sovkova, M. Buzgo, V. Lukasova, R. Divin, M. Rampichova, P. Blazek, T. Zikmund, J. Kaiser, Z. Karpisek, E. Amler, E. Filova
520    9_
$a Vitiligo is the most common depigmentation disorder of the skin. Currently, its therapy focuses on the halting of the immune response and stimulation of the regenerative processes, leading to the restoration of normal melanocyte function. Platelet-rich plasma (PRP) represents a safe and cheap regenerative therapy option, as it delivers a wide spectrum of native growth factors, cytokines and other bioactive molecules. The aim of this study was to develop a simple delivery system to prolong the effects of the bioactive molecules released from platelets. The surface of electrospun and centrifugally spun poly-ε-caprolactone (PCL) fibrous scaffolds was functionalized with various concentrations of platelets; the influence of the morphology of the scaffolds and the concentration of the released platelet-derived bioactive molecules on melanocytes, was then assessed. An almost two-fold increase in the amount of the released bioactive molecules was detected on the centrifugally spun vs. electrospun scaffolds, and a sustained 14-day release of the bioactive molecules was demonstrated. A strong concentration-dependent response of melanocyte to the bioactive molecules was observed; higher concentrations of bioactive molecules resulted in improved metabolic activity and proliferation of melanocytes. This simple system improves melanocyte viability, offers on-site preparation and is suitable for prolonged topical PRP administration.
650    17
$a systémy cílené aplikace léků $x metody $7 D016503 $2 czmesh
650    _7
$a vitiligo $x terapie $7 D014820 $2 czmesh
650    17
$a plazma bohatá na destičky $7 D053657 $2 czmesh
650    _7
$a melanocyty $7 D008544 $2 czmesh
650    _7
$a lidé $7 D006801 $2 czmesh
655    _2
$a časopisecké články $7 D016428
655    _7
$a práce podpořená grantem $7 D013485 $2 czmesh
700    1_
$a Sovková, Věra $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $u Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic $u University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic $7 xx0255510
700    1_
$a Buzgo, Matej $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $u University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic $7 xx0255533
700    1_
$a Lukasova, Vera $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $u University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic $1 https://orcid.org/0000000302273347
700    1_
$a Divín, Radek $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $u Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic $u University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic $7 xx0255506
700    1_
$a Rampichová, Michala $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $7 xx0171325
700    1_
$a Blazek, Pavel $u Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic $1 https://orcid.org/0000000240291389
700    1_
$a Zikmund, Tomas $u Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic
700    1_
$a Kaiser, Jozef $u Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 616 00 Brno, Czech Republic $1 https://orcid.org/000000027397125X $7 _AN040575
700    1_
$a Karpisek, Zdenek $u Institute of Mathematics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 616 69 Brno, Czech Republic
700    1_
$a Amler, Evžen, $u Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic $u University Centre for Energy Efficient Buildings, Czech Technical University in Prague, Trinecka 1024, 273 43 Bustehrad, Czech Republic $d 1958- $7 xx0014074
700    1_
$a Filová, Eva $u Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic $u Department of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 150 06 Prague, Czech Republic $1 https://orcid.org/000000031028605X $7 xx0171464
773    0_
$w MED00193495 $t Nanomaterials $x 2079-4991 $g Roč. 10, č. 9 (2020)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/32927642 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220324 $b ABA008
991    __
$a 20230116115600 $b ABA008
999    __
$a kom $b bmc $g 1773456 $s 1159716
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2020 $b 10 $c 9 $e 20200910 $i 2079-4991 $m Nanomaterials $n Nanomaterials (Basel) $x MED00193495
GRA    __
$a LO1508 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a CZ.2.16/3.1.00/21528 $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a CEITEC 2020 (LQ1601) $p Ministerstvo Školství, Mládeže a Tělovýchovy
GRA    __
$a LM2018110 $p CzechNanoLab Research Infrastructure
GRA    __
$a 17-32285A $p Agentura Pro Zdravotnický Výzkum České Republiky
GRA    __
$a NV17-32285A $p MZ0
LZP    __
$c NLK120 $d 20230116 $a 2021-granty

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace