• Je něco špatně v tomto záznamu ?

Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis

M. Stocker, I. Daunhawer, W. van Herk, S. El Helou, S. Dutta, FABA. Schuerman, RK. van den Tooren-de Groot, JW. Wieringa, J. Janota, LH. van der Meer-Kappelle, R. Moonen, SD. Sie, E. de Vries, AE. Donker, U. Zimmerman, LJ. Schlapbach, AC. de Mol,...

. 2022 ; 41 (3) : 248-254. [pub] 20220301

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22010904

BACKGROUND: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. STUDY DESIGN: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. RESULTS: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random. CONCLUSIONS: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.

Department of Computer Science ETH Zurich Switzerland

Department of Health Sciences and Medicine Head Biostatistics and Methodology University of Lucerne Lucerne Switzerland

Department of Jeroen Bosch Academy Research Jeroen Bosch Hospital 's Hertogenbosch

Department of Neonatal Intensive Care Unit Isala Women and Children's Hospital Zwolle

Department of Neonatology Albert Schweitzer Hospital Dordrecht

Department of Neonatology Amsterdam UMC Vrije Universiteit Amsterdam Amsterdam

Department of Neonatology Reinier de Graaf Gasthuis Delft

Department of Neonatology Sint Franciscus Gasthuis Rotterdam The Netherlands

Department of Neonatology St Josephs Healthcare Hamilton Health Sciences Hamilton ON Canada

Department of Neonatology University Children's Hospital Regensburg University of Regensburg Regensburg Germany

Department of Neonatology Zuyderland Medical Centre Heerlen

Department of Obstetrics and Gynecology Motol University Hospital 2nd Medical Faculty Prague Czech Republic

Department of Paediatrics Division of Neonatology Erasmus MC University Medical Centre Sophia Children's Hospital Rotterdam

Department of Paediatrics Division of Paediatric Infectious Diseases and Immunology Erasmus MC University Medical Centre Sophia Children's Hospital Rotterdam The Netherlands

Department of Paediatrics Haaglanden Medical Centre 's Gravenhage The Netherlands

Department of Paediatrics Kantonsspital Winterthur Winterthur

Department of Paediatrics Maxima Medical Centre Veldhoven The Netherlands

Department of Paediatrics Stadtspital Triemli Zürich Switzerland

Department of Pediatrics Tergooi Hospital Blaricum the Netherlands and Amsterdam University Medical Center Department of Pediatrics Amsterdam The Netherlands

Department of Tranzo Tilburg University Tilburg

Division of Neonatology McMaster University Children's Hospital Hamilton Health Sciences Hamilton ON Canada

From the Department of Paediatrics Neonatal and Paediatric Intensive Care Unit Children's Hospital Lucerne Lucerne

Neonatal and Pediatric Intensive Care Unit Children`s Research Center University Children's Hospital Zurich Zurich Switzerland

Therapeuticum Utrecht Utrecht

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22010904
003      
CZ-PrNML
005      
20220506130143.0
007      
ta
008      
220425s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1097/INF.0000000000003344 $2 doi
035    __
$a (PubMed)34508027
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Stocker, Martin $u From the Department of Paediatrics, Neonatal and Paediatric Intensive Care Unit, Children's Hospital Lucerne, Lucerne
245    10
$a Machine Learning Used to Compare the Diagnostic Accuracy of Risk Factors, Clinical Signs and Biomarkers and to Develop a New Prediction Model for Neonatal Early-onset Sepsis / $c M. Stocker, I. Daunhawer, W. van Herk, S. El Helou, S. Dutta, FABA. Schuerman, RK. van den Tooren-de Groot, JW. Wieringa, J. Janota, LH. van der Meer-Kappelle, R. Moonen, SD. Sie, E. de Vries, AE. Donker, U. Zimmerman, LJ. Schlapbach, AC. de Mol, A. Hoffmann-Haringsma, M. Roy, M. Tomaske, RF. Kornelisse, J. van Gijsel, FB. Plötz, S. Wellmann, NB. Achten, D. Lehnick, AMC. van Rossum, JE. Vogt
520    9_
$a BACKGROUND: Current strategies for risk stratification and prediction of neonatal early-onset sepsis (EOS) are inefficient and lack diagnostic performance. The aim of this study was to use machine learning to analyze the diagnostic accuracy of risk factors (RFs), clinical signs and biomarkers and to develop a prediction model for culture-proven EOS. We hypothesized that the contribution to diagnostic accuracy of biomarkers is higher than of RFs or clinical signs. STUDY DESIGN: Secondary analysis of the prospective international multicenter NeoPInS study. Neonates born after completed 34 weeks of gestation with antibiotic therapy due to suspected EOS within the first 72 hours of life participated. Primary outcome was defined as predictive performance for culture-proven EOS with variables known at the start of antibiotic therapy. Machine learning was used in form of a random forest classifier. RESULTS: One thousand six hundred eighty-five neonates treated for suspected infection were analyzed. Biomarkers were superior to clinical signs and RFs for prediction of culture-proven EOS. C-reactive protein and white blood cells were most important for the prediction of the culture result. Our full model achieved an area-under-the-receiver-operating-characteristic-curve of 83.41% (±8.8%) and an area-under-the-precision-recall-curve of 28.42% (±11.5%). The predictive performance of the model with RFs alone was comparable with random. CONCLUSIONS: Biomarkers have to be considered in algorithms for the management of neonates suspected of EOS. A 2-step approach with a screening tool for all neonates in combination with our model in the preselected population with an increased risk for EOS may have the potential to reduce the start of unnecessary antibiotics.
650    _2
$a antibakteriální látky $x terapeutické užití $7 D000900
650    _2
$a biologické markery $x krev $7 D015415
650    _2
$a C-reaktivní protein $x analýza $7 D002097
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a lidé $7 D006801
650    _2
$a kojenec $7 D007223
650    _2
$a novorozenec $7 D007231
650    12
$a strojové učení $7 D000069550
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a novorozenecká sepse $x diagnóza $x farmakoterapie $7 D000071074
650    _2
$a prospektivní studie $7 D011446
650    _2
$a ROC křivka $7 D012372
650    _2
$a rizikové faktory $7 D012307
655    _2
$a časopisecké články $7 D016428
700    1_
$a Daunhawer, Imant $u Department of Computer Science, ETH Zurich, Switzerland
700    1_
$a van Herk, Wendy $u Department of Paediatrics, Division of Paediatric Infectious Diseases and Immunology, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
700    1_
$a El Helou, Salhab $u Division of Neonatology, McMaster University Children's Hospital, Hamilton Health Sciences, Hamilton, ON, Canada
700    1_
$a Dutta, Sourabh $u Division of Neonatology, McMaster University Children's Hospital, Hamilton Health Sciences, Hamilton, ON, Canada
700    1_
$a Schuerman, Frank A B A $u Department of Neonatal Intensive Care Unit, Isala Women and Children's Hospital, Zwolle
700    1_
$a van den Tooren-de Groot, Rita K $u Department of Paediatrics, Haaglanden Medical Centre, 's Gravenhage, The Netherlands
700    1_
$a Wieringa, Jantien W $u Department of Paediatrics, Haaglanden Medical Centre, 's Gravenhage, The Netherlands
700    1_
$a Janota, Jan $u Department of Obstetrics and Gynecology, Motol University Hospital, Second Medical Faculty, Prague, Czech Republic
700    1_
$a van der Meer-Kappelle, Laura H $u Department of Neonatology, Reinier de Graaf Gasthuis, Delft
700    1_
$a Moonen, Rob $u Department of Neonatology, Zuyderland Medical Centre, Heerlen
700    1_
$a Sie, Sintha D $u Department of Neonatology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam
700    1_
$a de Vries, Esther $u Department of Jeroen Bosch Academy Research, Jeroen Bosch Hospital, 's-Hertogenbosch $u Department of Tranzo, Tilburg University, Tilburg
700    1_
$a Donker, Albertine E $u Department of Paediatrics, Maxima Medical Centre, Veldhoven, The Netherlands
700    1_
$a Zimmerman, Urs $u Department of Paediatrics, Kantonsspital Winterthur, Winterthur
700    1_
$a Schlapbach, Luregn J $u Neonatal and Pediatric Intensive Care Unit, Children`s Research Center, University Children's Hospital Zurich, Zurich, Switzerland
700    1_
$a de Mol, Amerik C $u Department of Neonatology, Albert Schweitzer Hospital, Dordrecht
700    1_
$a Hoffmann-Haringsma, Angelique $u Department of Neonatology, Sint Franciscus Gasthuis, Rotterdam, The Netherlands
700    1_
$a Roy, Madan $u Department of Neonatology, St. Josephs Healthcare, Hamilton Health Sciences, Hamilton, ON, Canada
700    1_
$a Tomaske, Maren $u Department of Paediatrics, Stadtspital Triemli, Zürich, Switzerland
700    1_
$a Kornelisse, René F $u Department of Paediatrics, Division of Neonatology, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam
700    1_
$a van Gijsel, Juliette $u Therapeuticum Utrecht, Utrecht
700    1_
$a Plötz, Frans B $u Department of Pediatrics, Tergooi Hospital, Blaricum, the Netherlands and Amsterdam University Medical Center, Department of Pediatrics, Amsterdam, The Netherlands
700    1_
$a Wellmann, Sven $u Department of Neonatology, University Children's Hospital Regensburg (KUNO), University of Regensburg, Regensburg, Germany
700    1_
$a Achten, Niek B $u Department of Pediatrics, Tergooi Hospital, Blaricum, the Netherlands and Amsterdam University Medical Center, Department of Pediatrics, Amsterdam, The Netherlands
700    1_
$a Lehnick, Dirk $u Department of Health Sciences and Medicine, Head Biostatistics and Methodology, University of Lucerne, Lucerne, Switzerland
700    1_
$a van Rossum, Annemarie M C $u Department of Paediatrics, Division of Paediatric Infectious Diseases and Immunology, Erasmus MC University Medical Centre-Sophia Children's Hospital, Rotterdam, The Netherlands
700    1_
$a Vogt, Julia E $u From the Department of Paediatrics, Neonatal and Paediatric Intensive Care Unit, Children's Hospital Lucerne, Lucerne
773    0_
$w MED00003732 $t The Pediatric infectious disease journal $x 1532-0987 $g Roč. 41, č. 3 (2022), s. 248-254
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34508027 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506130136 $b ABA008
999    __
$a ok $b bmc $g 1788833 $s 1162102
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 41 $c 3 $d 248-254 $e 20220301 $i 1532-0987 $m The Pediatric infectious disease journal $n Pediatr Infect Dis J $x MED00003732
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...