-
Je něco špatně v tomto záznamu ?
Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans
F. Mivalt, V. Kremen, V. Sladky, I. Balzekas, P. Nejedly, NM. Gregg, BN. Lundstrom, K. Lepkova, T. Pridalova, BH. Brinkmann, P. Jurak, JJ. Van Gompel, K. Miller, T. Denison, EK. St Louis, GA. Worrell
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
MC_UU_00003/3
Medical Research Council - United Kingdom
R01 NS092882
NINDS NIH HHS - United States
PubMed
35038687
DOI
10.1088/1741-2552/ac4bfd
Knihovny.cz E-zdroje
- MeSH
- epilepsie komplikace MeSH
- hipokampus MeSH
- hluboká mozková stimulace * metody MeSH
- lidé MeSH
- mozek MeSH
- nuclei anteriores thalami * MeSH
- poruchy spánku a bdění * komplikace diagnóza terapie MeSH
- retrospektivní studie MeSH
- thalamus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.
Department of Engineering Science Oxford University Oxford United Kingdom
Department of Neurosurgery Mayo Clinic Rochester MN United States of America
Faculty of Biomedical Engineering Czech Technical University Prague Kladno Czech Republic
International Clinical Research Center St Anne's University Hospital Brno Czech Republic
The Czech Academy of Sciences Institute of Scientific Instruments Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011047
- 003
- CZ-PrNML
- 005
- 20220506131334.0
- 007
- ta
- 008
- 220425s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/ac4bfd $2 doi
- 035 __
- $a (PubMed)35038687
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Mivalt, Filip $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000206939495
- 245 10
- $a Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans / $c F. Mivalt, V. Kremen, V. Sladky, I. Balzekas, P. Nejedly, NM. Gregg, BN. Lundstrom, K. Lepkova, T. Pridalova, BH. Brinkmann, P. Jurak, JJ. Van Gompel, K. Miller, T. Denison, EK. St Louis, GA. Worrell
- 520 9_
- $a Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.
- 650 12
- $a nuclei anteriores thalami $7 D020643
- 650 _2
- $a mozek $7 D001921
- 650 12
- $a hluboká mozková stimulace $x metody $7 D046690
- 650 _2
- $a epilepsie $x komplikace $7 D004827
- 650 _2
- $a hipokampus $7 D006624
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a retrospektivní studie $7 D012189
- 650 12
- $a poruchy spánku a bdění $x komplikace $x diagnóza $x terapie $7 D012893
- 650 _2
- $a thalamus $7 D013788
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Kremen, Vaclav $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000198447617
- 700 1_
- $a Sladky, Vladimir $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Balzekas, Irena $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States of America $u Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America $1 https://orcid.org/0000000327319188
- 700 1_
- $a Nejedly, Petr $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
- 700 1_
- $a Gregg, Nicholas M $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Lundstrom, Brian Nils $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000253105549
- 700 1_
- $a Lepkova, Kamila $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
- 700 1_
- $a Pridalova, Tereza $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- 700 1_
- $a Brinkmann, Benjamin H $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000223928608
- 700 1_
- $a Jurak, Pavel $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
- 700 1_
- $a Van Gompel, Jamie J $u Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Miller, Kai $u Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Denison, Timothy $u Department of Engineering Science, Oxford University, Oxford, United Kingdom $1 https://orcid.org/0000000254044004
- 700 1_
- $a St Louis, Erik K $u Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology & Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States of America
- 700 1_
- $a Worrell, Gregory A $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000329160553
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 19, č. 1 (2022)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35038687 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506131326 $b ABA008
- 999 __
- $a ok $b bmc $g 1788908 $s 1162245
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 19 $c 1 $e 20220208 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- GRA __
- $a MC_UU_00003/3 $p Medical Research Council $2 United Kingdom
- GRA __
- $a R01 NS092882 $p NINDS NIH HHS $2 United States
- LZP __
- $a Pubmed-20220425