• Je něco špatně v tomto záznamu ?

Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans

F. Mivalt, V. Kremen, V. Sladky, I. Balzekas, P. Nejedly, NM. Gregg, BN. Lundstrom, K. Lepkova, T. Pridalova, BH. Brinkmann, P. Jurak, JJ. Van Gompel, K. Miller, T. Denison, EK. St Louis, GA. Worrell

. 2022 ; 19 (1) : . [pub] 20220208

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc22011047

Grantová podpora
MC_UU_00003/3 Medical Research Council - United Kingdom
R01 NS092882 NINDS NIH HHS - United States

Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22011047
003      
CZ-PrNML
005      
20220506131334.0
007      
ta
008      
220425s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/ac4bfd $2 doi
035    __
$a (PubMed)35038687
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Mivalt, Filip $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000206939495
245    10
$a Electrical brain stimulation and continuous behavioral state tracking in ambulatory humans / $c F. Mivalt, V. Kremen, V. Sladky, I. Balzekas, P. Nejedly, NM. Gregg, BN. Lundstrom, K. Lepkova, T. Pridalova, BH. Brinkmann, P. Jurak, JJ. Van Gompel, K. Miller, T. Denison, EK. St Louis, GA. Worrell
520    9_
$a Objective.Electrical deep brain stimulation (DBS) is an established treatment for patients with drug-resistant epilepsy. Sleep disorders are common in people with epilepsy, and DBS may actually further disturb normal sleep patterns and sleep quality. Novel implantable devices capable of DBS and streaming of continuous intracranial electroencephalography (iEEG) signals enable detailed assessments of therapy efficacy and tracking of sleep related comorbidities. Here, we investigate the feasibility of automated sleep classification using continuous iEEG data recorded from Papez's circuit in four patients with drug resistant mesial temporal lobe epilepsy using an investigational implantable sensing and stimulation device with electrodes implanted in bilateral hippocampus (HPC) and anterior nucleus of thalamus (ANT).Approach.The iEEG recorded from HPC is used to classify sleep during concurrent DBS targeting ANT. Simultaneous polysomnography (PSG) and sensing from HPC were used to train, validate and test an automated classifier for a range of ANT DBS frequencies: no stimulation, 2 Hz, 7 Hz, and high frequency (>100 Hz).Main results.We show that it is possible to build a patient specific automated sleep staging classifier using power in band features extracted from one HPC iEEG sensing channel. The patient specific classifiers performed well under all thalamic DBS frequencies with an average F1-score 0.894, and provided viable classification into awake and major sleep categories, rapid eye movement (REM) and non-REM. We retrospectively analyzed classification performance with gold-standard PSG annotations, and then prospectively deployed the classifier on chronic continuous iEEG data spanning multiple months to characterize sleep patterns in ambulatory patients living in their home environment.Significance.The ability to continuously track behavioral state and fully characterize sleep should prove useful for optimizing DBS for epilepsy and associated sleep, cognitive and mood comorbidities.
650    12
$a nuclei anteriores thalami $7 D020643
650    _2
$a mozek $7 D001921
650    12
$a hluboká mozková stimulace $x metody $7 D046690
650    _2
$a epilepsie $x komplikace $7 D004827
650    _2
$a hipokampus $7 D006624
650    _2
$a lidé $7 D006801
650    _2
$a retrospektivní studie $7 D012189
650    12
$a poruchy spánku a bdění $x komplikace $x diagnóza $x terapie $7 D012893
650    _2
$a thalamus $7 D013788
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Kremen, Vaclav $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Prague, Czech Republic $1 https://orcid.org/0000000198447617
700    1_
$a Sladky, Vladimir $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Balzekas, Irena $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Mayo Clinic School of Medicine and the Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States of America $u Biomedical Engineering and Physiology Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States of America $1 https://orcid.org/0000000327319188
700    1_
$a Nejedly, Petr $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
700    1_
$a Gregg, Nicholas M $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Lundstrom, Brian Nils $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000253105549
700    1_
$a Lepkova, Kamila $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Faculty of Biomedical Engineering, Czech Technical University in Prague, Kladno, Czech Republic
700    1_
$a Pridalova, Tereza $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czech Republic $u International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
700    1_
$a Brinkmann, Benjamin H $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000223928608
700    1_
$a Jurak, Pavel $u The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
700    1_
$a Van Gompel, Jamie J $u Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Miller, Kai $u Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Denison, Timothy $u Department of Engineering Science, Oxford University, Oxford, United Kingdom $1 https://orcid.org/0000000254044004
700    1_
$a St Louis, Erik K $u Center for Sleep Medicine, Departments of Neurology and Medicine, Divisions of Sleep Neurology & Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, United States of America
700    1_
$a Worrell, Gregory A $u Bioelectronics Neurophysiology and Engineering Laboratory, Department of Neurology, Mayo Clinic, Rochester, MN, United States of America $u Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America $1 https://orcid.org/0000000329160553
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 19, č. 1 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35038687 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220425 $b ABA008
991    __
$a 20220506131326 $b ABA008
999    __
$a ok $b bmc $g 1788908 $s 1162245
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 19 $c 1 $e 20220208 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
GRA    __
$a MC_UU_00003/3 $p Medical Research Council $2 United Kingdom
GRA    __
$a R01 NS092882 $p NINDS NIH HHS $2 United States
LZP    __
$a Pubmed-20220425

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...