-
Je něco špatně v tomto záznamu ?
Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex
F. Missey, B. Botzanowski, L. Migliaccio, E. Acerbo, ED. Głowacki, A. Williamson
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34749345
DOI
10.1088/1741-2552/ac37a6
Knihovny.cz E-zdroje
- MeSH
- elektrická stimulace metody MeSH
- implantované elektrody MeSH
- lidé MeSH
- mozek * fyziologie MeSH
- myši MeSH
- somatosenzorické korové centrum * MeSH
- zdroje elektrické energie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
Institut de Neurosciences des Systèmes INSERM UMR_1106 Aix Marseille Université Marseille France
Laboratory of Organic Electronics Campus Norrköping Linköping University SE 60174 Norrköping Sweden
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22011911
- 003
- CZ-PrNML
- 005
- 20220506131333.0
- 007
- ta
- 008
- 220425s2021 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/ac37a6 $2 doi
- 035 __
- $a (PubMed)34749345
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Missey, Florian $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
- 245 10
- $a Organic electrolytic photocapacitors for stimulation of the mouse somatosensory cortex / $c F. Missey, B. Botzanowski, L. Migliaccio, E. Acerbo, ED. Głowacki, A. Williamson
- 520 9_
- $a Objective.For decades electrical stimulation has been used in neuroscience to investigate brain networks and been deployed clinically as a mode of therapy. Classically, all methods of electrical stimulation require implanted electrodes to be connected in some manner to an apparatus which provides power for the stimulation itself.Approach. We show the use of novel organic electronic devices, specifically organic electrolytic photocapacitors (OEPCs), which can be activated when illuminated with deep-red wavelengths of light and correspondingly do not require connections with external wires or power supplies when implanted at various depthsin vivo. Main results. We stimulated cortical brain tissue of mice with devices implanted subcutaneously, as well as beneath both the skin and skull to demonstrate a wireless stimulation of the whisker motor cortex. Devices induced both a behavior response (whisker movement) and a sensory response in the corresponding sensory cortex. Additionally, we showed that coating OEPCs with a thin layer of a conducting polymer formulation (PEDOT:PSS) significantly increases their charge storage capacity, and can be used to further optimize the applied photoelectrical stimulation.Significance. Overall, this new technology can provide an on-demand electrical stimulation by simply using an OEPC and a deep-red wavelength illumination. Wires and interconnects to provide power to implanted neurostimulation electrodes are often problematic in freely-moving animal research and with implanted electrodes for long-term therapy in patients. Our wireless brain stimulation opens new perspectives for wireless electrical stimulation for applications in fundamental neurostimulation and in chronic therapy.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a mozek $x fyziologie $7 D001921
- 650 _2
- $a zdroje elektrické energie $7 D011211
- 650 _2
- $a elektrická stimulace $x metody $7 D004558
- 650 _2
- $a implantované elektrody $7 D004567
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a myši $7 D051379
- 650 12
- $a somatosenzorické korové centrum $7 D013003
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Botzanowski, Boris $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
- 700 1_
- $a Migliaccio, Ludovico $u Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
- 700 1_
- $a Acerbo, Emma $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France
- 700 1_
- $a Głowacki, Eric Daniel $u Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic $u Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden $1 https://orcid.org/0000000202808017
- 700 1_
- $a Williamson, Adam $u Institut de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Université, Marseille, France $u Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden $u Center for Bioelectronic Medicine, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 18, č. 6 (2021)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/34749345 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220425 $b ABA008
- 991 __
- $a 20220506131325 $b ABA008
- 999 __
- $a ok $b bmc $g 1789488 $s 1163112
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2021 $b 18 $c 6 $e 20211119 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20220425