Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Biomedical science: Translation of machine learning to clinical applications

Smith Elani-don

. 2022 ; 18 (1) : 1-2.

Status minimální Jazyk angličtina Země Česko

Perzistentní odkaz   https://www.medvik.cz/link/bmc22016295

In recent years, expanding uses of artificial intelligence (AI) and machine learning have revolutionized pharmaceutical research and development, allowing us to harness multi-dimensional biological and clinical data from experimental to real-world settings (ML). Precision medicine discovery and development, from target validation to medication optimization, is driven by patient-centered iterative forward and reverse translation. As evidenced by deep characterizations of the genome, transcriptome, proteome, metabolome, microbiome, and exposome, the integration of advanced analytics into the practise of Translational Medicine is now a critical enabler for fully exploiting information contained in diverse sources of big data sets such as “omics” data. In this article, we provide an overview of machine learning (ML) applications in drug discovery and development, aligned with the three strategic pillars of Translational Medicine (target, patient, and dose), and discuss how they can alter the science and practise of the discipline. Model-informed drug discovery and development will be revolutionised if ML approaches are integrated into the science of pharmacometrics. Finally, we believe that cross-functional team activities involving clinical pharmacology, bioinformatics, and biomarker technology experts are critical to realising the promise of AI/ML-enabled Translational and Precision Medicine.

Citace poskytuje Crossref.org

Bibliografie atd.

Literatura

000      
00000naa a2200000 a 4500
001      
bmc22016295
003      
CZ-PrNML
005      
20220713130843.0
007      
cr|cn|
008      
220713s2022 xr fs 000 0|eng||
009      
eAR
024    7_
$a 10.24105/ejbi.2022.18.1.1-2 $2 doi
040    __
$a ABA008 $d ABA008 $e AACR2 $b cze
041    0_
$a eng
044    __
$a xr
100    1_
$a Elani-don, Smith $u Department of Health science, University of Queensland, Australia
245    10
$a Biomedical science: Translation of machine learning to clinical applications / $c Smith Elani-don
504    __
$a Literatura
520    3_
$a In recent years, expanding uses of artificial intelligence (AI) and machine learning have revolutionized pharmaceutical research and development, allowing us to harness multi-dimensional biological and clinical data from experimental to real-world settings (ML). Precision medicine discovery and development, from target validation to medication optimization, is driven by patient-centered iterative forward and reverse translation. As evidenced by deep characterizations of the genome, transcriptome, proteome, metabolome, microbiome, and exposome, the integration of advanced analytics into the practise of Translational Medicine is now a critical enabler for fully exploiting information contained in diverse sources of big data sets such as “omics” data. In this article, we provide an overview of machine learning (ML) applications in drug discovery and development, aligned with the three strategic pillars of Translational Medicine (target, patient, and dose), and discuss how they can alter the science and practise of the discipline. Model-informed drug discovery and development will be revolutionised if ML approaches are integrated into the science of pharmacometrics. Finally, we believe that cross-functional team activities involving clinical pharmacology, bioinformatics, and biomarker technology experts are critical to realising the promise of AI/ML-enabled Translational and Precision Medicine.
773    0_
$t European journal for biomedical informatics $x 1801-5603 $g Roč. 18, č. 1 (2022), s. 1-2 $w MED00173462
856    41
$u http://www.ejbi.org/ $y domovská stránka časopisu - plný text volně přístupný
910    __
$a ABA008 $b online $y 0 $z 0
990    __
$a 20220713115551 $b ABA008
991    __
$a 20220713131929 $b ABA008
999    __
$a min $b bmc $g 1813987 $s 1167537
BAS    __
$a 3 $a 4
BMC    __
$a 2022 $b 18 $c 1 $d 1-2 $i 1801-5603 $m European Journal for Biomedical Informatics $n Eur. J. Biomed. Inform. (Praha) $x MED00173462
LZP    __
$a NLK 2022-27/dk

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...