• Je něco špatně v tomto záznamu ?

Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data

P. Šín, A. Hokynková, N. Marie, P. Andrea, R. Krč, J. Podroužek

. 2022 ; 12 (4) : . [pub] 20220330

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22017486

Increasingly available open medical and health datasets encourage data-driven research with a promise of improving patient care through knowledge discovery and algorithm development. Among efficient approaches to such high-dimensional problems are a number of machine learning methods, which are applied in this paper to pressure ulcer prediction in modular critical care data. An inherent property of many health-related datasets is a high number of irregularly sampled time-variant and scarcely populated features, often exceeding the number of observations. Although machine learning methods are known to work well under such circumstances, many choices regarding model and data processing exist. In particular, this paper address both theoretical and practical aspects related to the application of six classification models to pressure ulcers, while utilizing one of the largest available Medical Information Mart for Intensive Care (MIMIC-IV) databases. Random forest, with an accuracy of 96%, is the best-performing approach among the considered machine learning algorithms.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22017486
003      
CZ-PrNML
005      
20220720100240.0
007      
ta
008      
220718s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/diagnostics12040850 $2 doi
035    __
$a (PubMed)35453898
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Šín, Petr $u Department of Burns and Plastic Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic
245    10
$a Machine Learning-Based Pressure Ulcer Prediction in Modular Critical Care Data / $c P. Šín, A. Hokynková, N. Marie, P. Andrea, R. Krč, J. Podroužek
520    9_
$a Increasingly available open medical and health datasets encourage data-driven research with a promise of improving patient care through knowledge discovery and algorithm development. Among efficient approaches to such high-dimensional problems are a number of machine learning methods, which are applied in this paper to pressure ulcer prediction in modular critical care data. An inherent property of many health-related datasets is a high number of irregularly sampled time-variant and scarcely populated features, often exceeding the number of observations. Although machine learning methods are known to work well under such circumstances, many choices regarding model and data processing exist. In particular, this paper address both theoretical and practical aspects related to the application of six classification models to pressure ulcers, while utilizing one of the largest available Medical Information Mart for Intensive Care (MIMIC-IV) databases. Random forest, with an accuracy of 96%, is the best-performing approach among the considered machine learning algorithms.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Hokynková, Alica $u Department of Burns and Plastic Surgery, Faculty Hospital Brno and Faculty of Medicine, Masaryk University, Jihlavská 20, 625 00 Brno, Czech Republic $1 https://orcid.org/0000000154574761
700    1_
$a Marie, Nováková $u Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $1 https://orcid.org/0000000330204250
700    1_
$a Andrea, Pokorná $u Department of Health Sciences, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic $1 https://orcid.org/0000000213056455
700    1_
$a Krč, Rostislav $u Institute of Computer Aided Engineering and Computer Science, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic $1 https://orcid.org/0000000167722575
700    1_
$a Podroužek, Jan $u Institute of Computer Aided Engineering and Computer Science, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic $1 https://orcid.org/0000000304935922
773    0_
$w MED00195450 $t Diagnostics (Basel, Switzerland) $x 2075-4418 $g Roč. 12, č. 4 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35453898 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20220718 $b ABA008
991    __
$a 20220720100235 $b ABA008
999    __
$a ind $b bmc $g 1816609 $s 1168728
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 12 $c 4 $e 20220330 $i 2075-4418 $m Diagnostics $n Diagnostics $x MED00195450
LZP    __
$a Pubmed-20220718

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...