Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Exploring attractor bifurcations in Boolean networks

N. Beneš, L. Brim, J. Kadlecaj, S. Pastva, D. Šafránek

. 2022 ; 23 (1) : 173. [pub] 20220511

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018427

Grantová podpora
MUNI/G/1771/2020. Masarykova Univerzita

BACKGROUND: Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors-subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. RESULTS: In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method's applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. CONCLUSIONS: The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system's stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22018427
003      
CZ-PrNML
005      
20220804134749.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-022-04708-9 $2 doi
035    __
$a (PubMed)35546394
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Beneš, Nikola $u Faculty of Informatics, Masaryk University, Brno, Czechia. xbenes3@fi.muni.cz
245    10
$a Exploring attractor bifurcations in Boolean networks / $c N. Beneš, L. Brim, J. Kadlecaj, S. Pastva, D. Šafránek
520    9_
$a BACKGROUND: Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors-subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. RESULTS: In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method's applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. CONCLUSIONS: The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system's stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
650    _2
$a algoritmy $7 D000465
650    _2
$a aniliny $7 D000814
650    _2
$a benzamidy $7 D001549
650    12
$a COVID-19 $7 D000086382
650    12
$a genové regulační sítě $7 D053263
650    _2
$a lidé $7 D006801
650    _2
$a modely genetické $7 D008957
650    _2
$a naftaleny $7 D009281
650    _2
$a SARS-CoV-2 $7 D000086402
655    _2
$a časopisecké články $7 D016428
700    1_
$a Brim, Luboš $u Faculty of Informatics, Masaryk University, Brno, Czechia
700    1_
$a Kadlecaj, Jakub $u Faculty of Informatics, Masaryk University, Brno, Czechia
700    1_
$a Pastva, Samuel $u Faculty of Informatics, Masaryk University, Brno, Czechia
700    1_
$a Šafránek, David $u Faculty of Informatics, Masaryk University, Brno, Czechia
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 23, č. 1 (2022), s. 173
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35546394 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804134743 $b ABA008
999    __
$a ok $b bmc $g 1822153 $s 1169670
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 23 $c 1 $d 173 $e 20220511 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
GRA    __
$a MUNI/G/1771/2020. $p Masarykova Univerzita
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...