-
Je něco špatně v tomto záznamu ?
Exploring attractor bifurcations in Boolean networks
N. Beneš, L. Brim, J. Kadlecaj, S. Pastva, D. Šafránek
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
MUNI/G/1771/2020.
Masarykova Univerzita
NLK
BioMedCentral
od 2000-12-01
BioMedCentral Open Access
od 2000
Directory of Open Access Journals
od 2000
Free Medical Journals
od 2000
PubMed Central
od 2000
Europe PubMed Central
od 2000
ProQuest Central
od 2009-01-01
Open Access Digital Library
od 2000-01-01
Open Access Digital Library
od 2000-07-01
Open Access Digital Library
od 2000-01-01
Medline Complete (EBSCOhost)
od 2000-01-01
Health & Medicine (ProQuest)
od 2009-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2000
Springer Nature OA/Free Journals
od 2000-12-01
- MeSH
- algoritmy MeSH
- aniliny MeSH
- benzamidy MeSH
- COVID-19 * MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- modely genetické MeSH
- naftaleny MeSH
- SARS-CoV-2 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors-subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. RESULTS: In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method's applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. CONCLUSIONS: The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system's stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22018427
- 003
- CZ-PrNML
- 005
- 20220804134749.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s12859-022-04708-9 $2 doi
- 035 __
- $a (PubMed)35546394
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Beneš, Nikola $u Faculty of Informatics, Masaryk University, Brno, Czechia. xbenes3@fi.muni.cz
- 245 10
- $a Exploring attractor bifurcations in Boolean networks / $c N. Beneš, L. Brim, J. Kadlecaj, S. Pastva, D. Šafránek
- 520 9_
- $a BACKGROUND: Boolean networks (BNs) provide an effective modelling formalism for various complex biochemical phenomena. Their long term behaviour is represented by attractors-subsets of the state space towards which the BN eventually converges. These are then typically linked to different biological phenotypes. Depending on various logical parameters, the structure and quality of attractors can undergo a significant change, known as a bifurcation. We present a methodology for analysing bifurcations in asynchronous parametrised Boolean networks. RESULTS: In this paper, we propose a computational framework employing advanced symbolic graph algorithms that enable the analysis of large networks with hundreds of Boolean variables. To visualise the results of this analysis, we developed a novel interactive presentation technique based on decision trees, allowing us to quickly uncover parameters crucial to the changes in the attractor landscape. As a whole, the methodology is implemented in our tool AEON. We evaluate the method's applicability on a complex human cell signalling network describing the activity of type-1 interferons and related molecules interacting with SARS-COV-2 virion. In particular, the analysis focuses on explaining the potential suppressive role of the recently proposed drug molecule GRL0617 on replication of the virus. CONCLUSIONS: The proposed method creates a working analogy to the concept of bifurcation analysis widely used in kinetic modelling to reveal the impact of parameters on the system's stability. The important feature of our tool is its unique capability to work fast with large-scale networks with a relatively large extent of unknown information. The results obtained in the case study are in agreement with the recent biological findings.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a aniliny $7 D000814
- 650 _2
- $a benzamidy $7 D001549
- 650 12
- $a COVID-19 $7 D000086382
- 650 12
- $a genové regulační sítě $7 D053263
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a naftaleny $7 D009281
- 650 _2
- $a SARS-CoV-2 $7 D000086402
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Brim, Luboš $u Faculty of Informatics, Masaryk University, Brno, Czechia
- 700 1_
- $a Kadlecaj, Jakub $u Faculty of Informatics, Masaryk University, Brno, Czechia
- 700 1_
- $a Pastva, Samuel $u Faculty of Informatics, Masaryk University, Brno, Czechia
- 700 1_
- $a Šafránek, David $u Faculty of Informatics, Masaryk University, Brno, Czechia
- 773 0_
- $w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 23, č. 1 (2022), s. 173
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35546394 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804134743 $b ABA008
- 999 __
- $a ok $b bmc $g 1822153 $s 1169670
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 23 $c 1 $d 173 $e 20220511 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
- GRA __
- $a MUNI/G/1771/2020. $p Masarykova Univerzita
- LZP __
- $a Pubmed-20220720