• Je něco špatně v tomto záznamu ?

Interpretable functional specialization emerges in deep convolutional networks trained on brain signals

J. Hammer, RT. Schirrmeister, K. Hartmann, P. Marusic, A. Schulze-Bonhage, T. Ball

. 2022 ; 19 (3) : . [pub] 20220509

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22018442

Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22018442
003      
CZ-PrNML
005      
20220804134755.0
007      
ta
008      
220720s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/ac6770 $2 doi
035    __
$a (PubMed)35421857
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Hammer, J $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic $1 https://orcid.org/0000000284581273
245    10
$a Interpretable functional specialization emerges in deep convolutional networks trained on brain signals / $c J. Hammer, RT. Schirrmeister, K. Hartmann, P. Marusic, A. Schulze-Bonhage, T. Ball
520    9_
$a Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.
650    _2
$a algoritmy $7 D000465
650    _2
$a mozek $7 D001921
650    12
$a rozhraní mozek-počítač $7 D062207
650    _2
$a elektroencefalografie $x metody $7 D004569
650    _2
$a neuronové sítě $7 D016571
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Schirrmeister, R T $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $u Machine Learning Lab, Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg, Germany $1 https://orcid.org/0000000255187445
700    1_
$a Hartmann, K $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
700    1_
$a Marusic, P $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic $1 https://orcid.org/000000021240653X
700    1_
$a Schulze-Bonhage, A $u Epilepsy Center, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
700    1_
$a Ball, T $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $u Epilepsy Center, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $1 https://orcid.org/000000024993466X
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 19, č. 3 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35421857 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804134749 $b ABA008
999    __
$a ok $b bmc $g 1822163 $s 1169685
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 19 $c 3 $e 20220509 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...