-
Je něco špatně v tomto záznamu ?
Interpretable functional specialization emerges in deep convolutional networks trained on brain signals
J. Hammer, RT. Schirrmeister, K. Hartmann, P. Marusic, A. Schulze-Bonhage, T. Ball
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35421857
DOI
10.1088/1741-2552/ac6770
Knihovny.cz E-zdroje
- MeSH
- algoritmy MeSH
- elektroencefalografie metody MeSH
- mozek MeSH
- neuronové sítě MeSH
- rozhraní mozek-počítač * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22018442
- 003
- CZ-PrNML
- 005
- 20220804134755.0
- 007
- ta
- 008
- 220720s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1088/1741-2552/ac6770 $2 doi
- 035 __
- $a (PubMed)35421857
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Hammer, J $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic $1 https://orcid.org/0000000284581273
- 245 10
- $a Interpretable functional specialization emerges in deep convolutional networks trained on brain signals / $c J. Hammer, RT. Schirrmeister, K. Hartmann, P. Marusic, A. Schulze-Bonhage, T. Ball
- 520 9_
- $a Objective.Functional specialization is fundamental to neural information processing. Here, we study whether and how functional specialization emerges in artificial deep convolutional neural networks (CNNs) during a brain-computer interfacing (BCI) task.Approach.We trained CNNs to predict hand movement speed from intracranial electroencephalography (iEEG) and delineated how units across the different CNN hidden layers learned to represent the iEEG signal.Main results.We show that distinct, functionally interpretable neural populations emerged as a result of the training process. While some units became sensitive to either iEEG amplitude or phase, others showed bimodal behavior with significant sensitivity to both features. Pruning of highly sensitive units resulted in a steep drop of decoding accuracy not observed for pruning of less sensitive units, highlighting the functional relevance of the amplitude- and phase-specialized populations.Significance.We anticipate that emergent functional specialization as uncovered here will become a key concept in research towards interpretable deep learning for neuroscience and BCI applications.
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a mozek $7 D001921
- 650 12
- $a rozhraní mozek-počítač $7 D062207
- 650 _2
- $a elektroencefalografie $x metody $7 D004569
- 650 _2
- $a neuronové sítě $7 D016571
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Schirrmeister, R T $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $u Machine Learning Lab, Department of Computer Science, Faculty of Engineering, University of Freiburg, Freiburg, Germany $1 https://orcid.org/0000000255187445
- 700 1_
- $a Hartmann, K $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- 700 1_
- $a Marusic, P $u Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic $1 https://orcid.org/000000021240653X
- 700 1_
- $a Schulze-Bonhage, A $u Epilepsy Center, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- 700 1_
- $a Ball, T $u Neuromedical AI Lab, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $u Epilepsy Center, Department of Neurosurgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany $1 https://orcid.org/000000024993466X
- 773 0_
- $w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 19, č. 3 (2022)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35421857 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20220804134749 $b ABA008
- 999 __
- $a ok $b bmc $g 1822163 $s 1169685
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 19 $c 3 $e 20220509 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
- LZP __
- $a Pubmed-20220720