• Je něco špatně v tomto záznamu ?

Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels

OY. Rogulska, NA. Trufanova, YA. Petrenko, NV. Repin, VP. Grischuk, NO. Ashukina, SY. Bondarenko, GV. Ivanov, EA. Podorozhko, VI. Lozinsky, AY. Petrenko

. 2022 ; 110 (2) : 489-499. [pub] 20210813

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22019433

Bone tissue engineering strategy involves the 3D scaffolds and appropriate cell types promoting the replacement of the damaged area. In this work, we aimed to develop a fast and reliable clinically relevant protocol for engineering viable bone grafts, using cryopreserved adipose tissue-derived mesenchymal stromal cells (MSCs) and composite 3D collagen-nano-hydroxyapatite (nanoHA) scaffolds. Xeno- and DMSO-free cryopreserved MSCs were perfusion-seeded into the biomimetic collagen/nanoHA scaffolds manufactured by cryotropic gelation and their osteoregenerative potential was assessed in vitro and in vivo. Cryopreserved MSCs retained the ability to homogenously repopulate the whole volume of the scaffolds during 7 days of post-thaw culture. Moreover, the scaffold provided a suitable microenvironment for induced osteogenic differentiation of cells, confirmed by alkaline phosphatase activity and mineralization. Implantation of collagen-nanoHA cryogels with cryopreserved MSCs accelerated woven bone tissue formation, maturation of bone trabeculae, and vascularization of femur defects in immunosuppressed rats compared to cell-free collagen-nanoHA scaffolds. The established combination of xeno-free cell culture and cryopreservation techniques together with an appropriate scaffold design and cell repopulation approach accelerated the generation of viable bone grafts.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22019433
003      
CZ-PrNML
005      
20220804135643.0
007      
ta
008      
220720s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1002/jbm.b.34927 $2 doi
035    __
$a (PubMed)34387944
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Rogulska, Olena Y $u Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine $u Biochemistry department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine $1 https://orcid.org/0000000247570241
245    10
$a Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels / $c OY. Rogulska, NA. Trufanova, YA. Petrenko, NV. Repin, VP. Grischuk, NO. Ashukina, SY. Bondarenko, GV. Ivanov, EA. Podorozhko, VI. Lozinsky, AY. Petrenko
520    9_
$a Bone tissue engineering strategy involves the 3D scaffolds and appropriate cell types promoting the replacement of the damaged area. In this work, we aimed to develop a fast and reliable clinically relevant protocol for engineering viable bone grafts, using cryopreserved adipose tissue-derived mesenchymal stromal cells (MSCs) and composite 3D collagen-nano-hydroxyapatite (nanoHA) scaffolds. Xeno- and DMSO-free cryopreserved MSCs were perfusion-seeded into the biomimetic collagen/nanoHA scaffolds manufactured by cryotropic gelation and their osteoregenerative potential was assessed in vitro and in vivo. Cryopreserved MSCs retained the ability to homogenously repopulate the whole volume of the scaffolds during 7 days of post-thaw culture. Moreover, the scaffold provided a suitable microenvironment for induced osteogenic differentiation of cells, confirmed by alkaline phosphatase activity and mineralization. Implantation of collagen-nanoHA cryogels with cryopreserved MSCs accelerated woven bone tissue formation, maturation of bone trabeculae, and vascularization of femur defects in immunosuppressed rats compared to cell-free collagen-nanoHA scaffolds. The established combination of xeno-free cell culture and cryopreservation techniques together with an appropriate scaffold design and cell repopulation approach accelerated the generation of viable bone grafts.
650    _2
$a zvířata $7 D000818
650    _2
$a buněčná diferenciace $7 D002454
650    _2
$a proliferace buněk $7 D049109
650    _2
$a kultivované buňky $7 D002478
650    _2
$a kolagen $x farmakologie $7 D003094
650    12
$a kryogely $7 D059985
650    _2
$a kryoprezervace $7 D015925
650    12
$a mezenchymální kmenové buňky $x metabolismus $7 D059630
650    _2
$a osteogeneze $7 D010012
650    _2
$a krysa rodu Rattus $7 D051381
650    _2
$a tkáňové inženýrství $x metody $7 D023822
650    _2
$a tkáňové podpůrné struktury $7 D054457
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Trufanova, Nataliya A $u Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
700    1_
$a Petrenko, Yuriy A $u Neuroregeneration department, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic $1 https://orcid.org/0000000272648784
700    1_
$a Repin, Nikolay V $u Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
700    1_
$a Grischuk, Victor P $u Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
700    1_
$a Ashukina, Nataliya O $u Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
700    1_
$a Bondarenko, Stanislav Y $u Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
700    1_
$a Ivanov, Gennadiy V $u Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
700    1_
$a Podorozhko, Elena A $u Laboratory for Cryochemistry of BioPolymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
700    1_
$a Lozinsky, Vladimir I $u Laboratory for Cryochemistry of BioPolymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
700    1_
$a Petrenko, Alexander Y $u Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine $u Biochemistry department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine $1 https://orcid.org/0000000295548639
773    0_
$w MED00007497 $t Journal of biomedical materials research. Part B, Applied biomaterials $x 1552-4981 $g Roč. 110, č. 2 (2022), s. 489-499
856    41
$u https://pubmed.ncbi.nlm.nih.gov/34387944 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20220720 $b ABA008
991    __
$a 20220804135637 $b ABA008
999    __
$a ok $b bmc $g 1822857 $s 1170676
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 110 $c 2 $d 489-499 $e 20210813 $i 1552-4981 $m Journal of biomedical materials research. Part B, Applied biomaterials $n J Biomed Mater Res $x MED00007497
LZP    __
$a Pubmed-20220720

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...