-
Je něco špatně v tomto záznamu ?
Mass spectrometry, data re-analysis, and homology modelling predict posttranslational modifications of leucine-rich alpha-2-glycoprotein as a marker of myelodysplastic syndrome
P. Majek, Z. Sovova, K. Pecankova, J. Cermak, Z. Gasova, P. Pecherkova, V. Ignjatovic, JE. Dyr
Jazyk angličtina Země Nizozemsko
Typ dokumentu časopisecké články
PubMed
35275518
DOI
10.3233/cbm-210033
Knihovny.cz E-zdroje
- MeSH
- biologické markery MeSH
- glykoproteiny * genetika metabolismus MeSH
- hmotnostní spektrometrie MeSH
- leucin metabolismus MeSH
- lidé MeSH
- myelodysplastické syndromy * diagnóza MeSH
- posttranslační úpravy proteinů MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Leucine-rich alpha-2-glycoprotein (LRG) has been repeatedly proposed as a potential plasma biomarker for myelodysplastic syndrome (MDS). OBJECTIVE: The goal of our work was to establish the total LRG plasma level and LRG posttranslational modifications (PTMs) as a suitable MDS biomarker. METHODS: The total plasma LRG concentration was determined with ELISA, whilst the LRG-specific PTMs and their locations, were established using mass spectrometry and public mass spectrometry data re-analysis. Homology modelling and sequence analysis were used to establish the potential impact of PTMs on LRG functions via their impact on the LRG structure. RESULTS: While the results showed that the total LRG plasma concentration is not a suitable MDS marker, alterations within two LRG sites correlated with MDS diagnosis (p= 0.0011). Sequence analysis and the homology model suggest the influence of PTMs within the two LRG sites on the function of this protein. CONCLUSIONS: We report the presence of LRG proteoforms that correlate with diagnosis in the plasma of MDS patients. The combination of mass spectrometry, re-analysis of publicly available data, and homology modelling, represents an approach that can be used for any protein to predict clinically relevant protein sites for biomarker research despite the character of the PTMs being unknown.
Department of Paediatrics The University of Melbourne Parkville Victoria Australia
Institute of Hematology and Blood Transfusion Prague Czech Republic
Murdoch Children's Research Institute Parkville Victoria Australia
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22019498
- 003
- CZ-PrNML
- 005
- 20231102132612.0
- 007
- ta
- 008
- 220720s2022 ne f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3233/CBM-210033 $2 doi
- 035 __
- $a (PubMed)35275518
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ne
- 100 1_
- $a Majek, Pavel $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- 245 10
- $a Mass spectrometry, data re-analysis, and homology modelling predict posttranslational modifications of leucine-rich alpha-2-glycoprotein as a marker of myelodysplastic syndrome / $c P. Majek, Z. Sovova, K. Pecankova, J. Cermak, Z. Gasova, P. Pecherkova, V. Ignjatovic, JE. Dyr
- 520 9_
- $a BACKGROUND: Leucine-rich alpha-2-glycoprotein (LRG) has been repeatedly proposed as a potential plasma biomarker for myelodysplastic syndrome (MDS). OBJECTIVE: The goal of our work was to establish the total LRG plasma level and LRG posttranslational modifications (PTMs) as a suitable MDS biomarker. METHODS: The total plasma LRG concentration was determined with ELISA, whilst the LRG-specific PTMs and their locations, were established using mass spectrometry and public mass spectrometry data re-analysis. Homology modelling and sequence analysis were used to establish the potential impact of PTMs on LRG functions via their impact on the LRG structure. RESULTS: While the results showed that the total LRG plasma concentration is not a suitable MDS marker, alterations within two LRG sites correlated with MDS diagnosis (p= 0.0011). Sequence analysis and the homology model suggest the influence of PTMs within the two LRG sites on the function of this protein. CONCLUSIONS: We report the presence of LRG proteoforms that correlate with diagnosis in the plasma of MDS patients. The combination of mass spectrometry, re-analysis of publicly available data, and homology modelling, represents an approach that can be used for any protein to predict clinically relevant protein sites for biomarker research despite the character of the PTMs being unknown.
- 650 _2
- $a biologické markery $7 D015415
- 650 12
- $a glykoproteiny $x genetika $x metabolismus $7 D006023
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a leucin $x metabolismus $7 D007930
- 650 _2
- $a hmotnostní spektrometrie $7 D013058
- 650 12
- $a myelodysplastické syndromy $x diagnóza $7 D009190
- 650 _2
- $a posttranslační úpravy proteinů $7 D011499
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Sovova, Zofie $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- 700 1_
- $a Pecankova, Klara $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- 700 1_
- $a Cermak, Jaroslav $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- 700 1_
- $a Gasova, Zdenka $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- 700 1_
- $a Pecherková, Pavla, $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic $d 1980- $7 ctu2013787641
- 700 1_
- $a Ignjatovic, Vera $u Murdoch Children's Research Institute, Parkville Victoria, Australia $u Department of Paediatrics, The University of Melbourne, Parkville Victoria, Australia
- 700 1_
- $a Dyr, Jan E $u Institute of Hematology and Blood Transfusion, Prague, Czech Republic
- 773 0_
- $w MED00173146 $t Disease markers. Section A, Cancer Biomarkers $x 1875-8592 $g Roč. 34, č. 3 (2022), s. 485-492
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35275518 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20220720 $b ABA008
- 991 __
- $a 20231102132607 $b ABA008
- 999 __
- $a ok $b bmc $g 1822902 $s 1170741
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 34 $c 3 $d 485-492 $e - $i 1875-8592 $m Disease markers. Section A, Cancer Biomarkers $n Cancer Biomark $x MED00173146
- LZP __
- $a Pubmed-20220720