Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Lightweight Distributed Provenance Model for Complex Real-world Environments

R. Wittner, C. Mascia, M. Gallo, F. Frexia, H. Müller, M. Plass, J. Geiger, P. Holub

. 2022 ; 9 (1) : 503. [pub] 20220817

Jazyk angličtina Země Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22023513

Grantová podpora
824087 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
824087 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
825575 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
824087 EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
DIFRA project Regione Autonoma della Sardegna (Sardinia Region)
DIFRA project Regione Autonoma della Sardegna (Sardinia Region)

Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline - starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22023513
003      
CZ-PrNML
005      
20221031095302.0
007      
ta
008      
221010s2022 xxk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41597-022-01537-6 $2 doi
035    __
$a (PubMed)35977957
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxk
100    1_
$a Wittner, Rudolf $u BBMRI-ERIC, Neue Stiftingtalstrasse 2, 8010, Graz, Austria $u Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic $u Institute of Computer Science, Masaryk University, Šumavská 416/15, 602 00, Brno, Czech Republic $1 0000000200032024
245    10
$a Lightweight Distributed Provenance Model for Complex Real-world Environments / $c R. Wittner, C. Mascia, M. Gallo, F. Frexia, H. Müller, M. Plass, J. Geiger, P. Holub
520    9_
$a Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline - starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mascia, Cecilia $u CRS4 - Center for Advanced Studies, Research and Development in Sardinia, Loc. Piscina Manna, 09050, Pula, CA, Italy $1 000000028952725X
700    1_
$a Gallo, Matej $u Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic
700    1_
$a Frexia, Francesca $u CRS4 - Center for Advanced Studies, Research and Development in Sardinia, Loc. Piscina Manna, 09050, Pula, CA, Italy
700    1_
$a Müller, Heimo $u BBMRI-ERIC, Neue Stiftingtalstrasse 2, 8010, Graz, Austria $u Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
700    1_
$a Plass, Markus $u Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
700    1_
$a Geiger, Jörg $u Interdisciplinary Bank of Biomaterials and Data Würzburg (ibdw), University and University Hospital of Würzburg, 97080, Würzburg, Germany $1 000000027689531X
700    1_
$a Holub, Petr $u BBMRI-ERIC, Neue Stiftingtalstrasse 2, 8010, Graz, Austria. petr.holub@bbmri-eric.eu $u Institute of Computer Science, Masaryk University, Šumavská 416/15, 602 00, Brno, Czech Republic. petr.holub@bbmri-eric.eu
773    0_
$w MED00208692 $t Scientific data $x 2052-4463 $g Roč. 9, č. 1 (2022), s. 503
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35977957 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20221010 $b ABA008
991    __
$a 20221031095300 $b ABA008
999    __
$a ind $b bmc $g 1853895 $s 1174801
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 9 $c 1 $d 503 $e 20220817 $i 2052-4463 $m Scientific data $n Sci Data $x MED00208692
GRA    __
$a 824087 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
GRA    __
$a 824087 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
GRA    __
$a 825575 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
GRA    __
$a 824087 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
GRA    __
$a DIFRA project $p Regione Autonoma della Sardegna (Sardinia Region)
GRA    __
$a DIFRA project $p Regione Autonoma della Sardegna (Sardinia Region)
LZP    __
$a Pubmed-20221010

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...