-
Je něco špatně v tomto záznamu ?
Lightweight Distributed Provenance Model for Complex Real-world Environments
R. Wittner, C. Mascia, M. Gallo, F. Frexia, H. Müller, M. Plass, J. Geiger, P. Holub
Jazyk angličtina Země Velká Británie
Typ dokumentu časopisecké články
Grantová podpora
824087
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
824087
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
825575
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
824087
EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
DIFRA project
Regione Autonoma della Sardegna (Sardinia Region)
DIFRA project
Regione Autonoma della Sardegna (Sardinia Region)
NLK
Directory of Open Access Journals
od 2014
Free Medical Journals
od 2014
Nature Open Access
od 2014-12-01
PubMed Central
od 2014
Europe PubMed Central
od 2014
ProQuest Central
od 2014-03-01
Open Access Digital Library
od 2014-01-01
Open Access Digital Library
od 2014-01-01
Health & Medicine (ProQuest)
od 2014-03-01
ROAD: Directory of Open Access Scholarly Resources
od 2014
Springer Nature OA/Free Journals
od 2014-12-01
- Publikační typ
- časopisecké články MeSH
Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline - starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.
BBMRI ERIC Neue Stiftingtalstrasse 2 8010 Graz Austria
Faculty of Informatics Masaryk University Botanická 68a 602 00 Brno Czech Republic
Institute of Computer Science Masaryk University Šumavská 416 15 602 00 Brno Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22023513
- 003
- CZ-PrNML
- 005
- 20221031095302.0
- 007
- ta
- 008
- 221010s2022 xxk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41597-022-01537-6 $2 doi
- 035 __
- $a (PubMed)35977957
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Wittner, Rudolf $u BBMRI-ERIC, Neue Stiftingtalstrasse 2, 8010, Graz, Austria $u Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic $u Institute of Computer Science, Masaryk University, Šumavská 416/15, 602 00, Brno, Czech Republic $1 0000000200032024
- 245 10
- $a Lightweight Distributed Provenance Model for Complex Real-world Environments / $c R. Wittner, C. Mascia, M. Gallo, F. Frexia, H. Müller, M. Plass, J. Geiger, P. Holub
- 520 9_
- $a Provenance is information describing the lineage of an object, such as a dataset or biological material. Since these objects can be passed between organizations, each organization can document only parts of the objects life cycle. As a result, interconnection of distributed provenance parts forms distributed provenance chains. Dependant on the actual provenance content, complete provenance chains can provide traceability and contribute to reproducibility and FAIRness of research objects. In this paper, we define a lightweight provenance model based on W3C PROV that enables generation of distributed provenance chains in complex, multi-organizational environments. The application of the model is demonstrated with a use case spanning several steps of a real-world research pipeline - starting with the acquisition of a specimen, its processing and storage, histological examination, and the generation/collection of associated data (images, annotations, clinical data), ending with training an AI model for the detection of tumor in the images. The proposed model has become an open conceptual foundation of the currently developed ISO 23494 standard on provenance for biotechnology domain.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Mascia, Cecilia $u CRS4 - Center for Advanced Studies, Research and Development in Sardinia, Loc. Piscina Manna, 09050, Pula, CA, Italy $1 000000028952725X
- 700 1_
- $a Gallo, Matej $u Faculty of Informatics, Masaryk University, Botanická 68a, 602 00, Brno, Czech Republic
- 700 1_
- $a Frexia, Francesca $u CRS4 - Center for Advanced Studies, Research and Development in Sardinia, Loc. Piscina Manna, 09050, Pula, CA, Italy
- 700 1_
- $a Müller, Heimo $u BBMRI-ERIC, Neue Stiftingtalstrasse 2, 8010, Graz, Austria $u Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
- 700 1_
- $a Plass, Markus $u Diagnostic and Research Center for Molecular BioMedicine, Diagnostic & Research Institute of Pathology, Medical University of Graz, Neue Stiftingtalstrasse 2, 8010, Graz, Austria
- 700 1_
- $a Geiger, Jörg $u Interdisciplinary Bank of Biomaterials and Data Würzburg (ibdw), University and University Hospital of Würzburg, 97080, Würzburg, Germany $1 000000027689531X
- 700 1_
- $a Holub, Petr $u BBMRI-ERIC, Neue Stiftingtalstrasse 2, 8010, Graz, Austria. petr.holub@bbmri-eric.eu $u Institute of Computer Science, Masaryk University, Šumavská 416/15, 602 00, Brno, Czech Republic. petr.holub@bbmri-eric.eu
- 773 0_
- $w MED00208692 $t Scientific data $x 2052-4463 $g Roč. 9, č. 1 (2022), s. 503
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35977957 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20221010 $b ABA008
- 991 __
- $a 20221031095300 $b ABA008
- 999 __
- $a ind $b bmc $g 1853895 $s 1174801
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 9 $c 1 $d 503 $e 20220817 $i 2052-4463 $m Scientific data $n Sci Data $x MED00208692
- GRA __
- $a 824087 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- GRA __
- $a 824087 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- GRA __
- $a 825575 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- GRA __
- $a 824087 $p EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
- GRA __
- $a DIFRA project $p Regione Autonoma della Sardegna (Sardinia Region)
- GRA __
- $a DIFRA project $p Regione Autonoma della Sardegna (Sardinia Region)
- LZP __
- $a Pubmed-20221010