Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Collective Variable for Metadynamics Derived From AlphaFold Output

V. Spiwok, M. Kurečka, A. Křenek

. 2022 ; 9 (-) : 878133. [pub] 20220613

Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22023869

AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22023869
003      
CZ-PrNML
005      
20221031095136.0
007      
ta
008      
221010s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3389/fmolb.2022.878133 $2 doi
035    __
$a (PubMed)35769910
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Spiwok, Vojtěch $u Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
245    10
$a Collective Variable for Metadynamics Derived From AlphaFold Output / $c V. Spiwok, M. Kurečka, A. Křenek
520    9_
$a AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kurečka, Martin $u Institute of Computer Science, Masaryk University, Brno, Czechia
700    1_
$a Křenek, Aleš $u Institute of Computer Science, Masaryk University, Brno, Czechia
773    0_
$w MED00188065 $t Frontiers in molecular biosciences $x 2296-889X $g Roč. 9, č. - (2022), s. 878133
856    41
$u https://pubmed.ncbi.nlm.nih.gov/35769910 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20221010 $b ABA008
991    __
$a 20221031095134 $b ABA008
999    __
$a ind $b bmc $g 1854066 $s 1175157
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 9 $c - $d 878133 $e 20220613 $i 2296-889X $m Frontiers in molecular biosciences $n Front Mol Biosci $x MED00188065
LZP    __
$a Pubmed-20221010

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...