-
Je něco špatně v tomto záznamu ?
Collective Variable for Metadynamics Derived From AlphaFold Output
V. Spiwok, M. Kurečka, A. Křenek
Jazyk angličtina Země Švýcarsko
Typ dokumentu časopisecké články
NLK
Directory of Open Access Journals
od 2014
Free Medical Journals
od 2014
PubMed Central
od 2014
Europe PubMed Central
od 2014
Open Access Digital Library
od 2014-01-01
Open Access Digital Library
od 2014-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2014
- Publikační typ
- časopisecké články MeSH
AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22023869
- 003
- CZ-PrNML
- 005
- 20221031095136.0
- 007
- ta
- 008
- 221010s2022 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3389/fmolb.2022.878133 $2 doi
- 035 __
- $a (PubMed)35769910
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Spiwok, Vojtěch $u Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology, Prague, Czechia
- 245 10
- $a Collective Variable for Metadynamics Derived From AlphaFold Output / $c V. Spiwok, M. Kurečka, A. Křenek
- 520 9_
- $a AlphaFold is a neural network-based tool for the prediction of 3D structures of proteins. In CASP14, a blind structure prediction challenge, it performed significantly better than other competitors, making it the best available structure prediction tool. One of the outputs of AlphaFold is the probability profile of residue-residue distances. This makes it possible to score any conformation of the studied protein to express its compliance with the AlphaFold model. Here, we show how this score can be used to drive protein folding simulation by metadynamics and parallel tempering metadynamics. Using parallel tempering metadynamics, we simulated the folding of a mini-protein Trp-cage and β hairpin and predicted their folding equilibria. We observe the potential of the AlphaFold-based collective variable in applications beyond structure prediction, such as in structure refinement or prediction of the outcome of a mutation.
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kurečka, Martin $u Institute of Computer Science, Masaryk University, Brno, Czechia
- 700 1_
- $a Křenek, Aleš $u Institute of Computer Science, Masaryk University, Brno, Czechia
- 773 0_
- $w MED00188065 $t Frontiers in molecular biosciences $x 2296-889X $g Roč. 9, č. - (2022), s. 878133
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35769910 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20221010 $b ABA008
- 991 __
- $a 20221031095134 $b ABA008
- 999 __
- $a ind $b bmc $g 1854066 $s 1175157
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 9 $c - $d 878133 $e 20220613 $i 2296-889X $m Frontiers in molecular biosciences $n Front Mol Biosci $x MED00188065
- LZP __
- $a Pubmed-20221010