Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

circGPA: circRNA functional annotation based on probability-generating functions

P. Ryšavý, J. Kléma, MD. Merkerová

. 2022 ; 23 (1) : 392. [pub] 20220927

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22024341

Grantová podpora
20-19162S Grantová Agentura České Republiky
20-19162S Grantová Agentura České Republiky
20-19162S Grantová Agentura České Republiky
CZ.02.1.01/0.0/0.0/16_019/0000765 European Commission
CZ.02.1.01/0.0/0.0/16_019/0000765 European Commission

Recent research has already shown that circular RNAs (circRNAs) are functional in gene expression regulation and potentially related to diseases. Due to their stability, circRNAs can also be used as biomarkers for diagnosis. However, the function of most circRNAs remains unknown, and it is expensive and time-consuming to discover it through biological experiments. In this paper, we predict circRNA annotations from the knowledge of their interaction with miRNAs and subsequent miRNA-mRNA interactions. First, we construct an interaction network for a target circRNA and secondly spread the information from the network nodes with the known function to the root circRNA node. This idea itself is not new; our main contribution lies in proposing an efficient and exact deterministic procedure based on the principle of probability-generating functions to calculate the p-value of association test between a circRNA and an annotation term. We show that our publicly available algorithm is both more effective and efficient than the commonly used Monte-Carlo sampling approach that may suffer from difficult quantification of sampling convergence and subsequent sampling inefficiency. We experimentally demonstrate that the new approach is two orders of magnitude faster than the Monte-Carlo sampling, which makes summary annotation of large circRNA files feasible; this includes their reannotation after periodical interaction network updates, for example. We provide a summary annotation of a current circRNA database as one of our outputs. The proposed algorithm could be generalized towards other types of RNA in way that is straightforward.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024341
003      
CZ-PrNML
005      
20221031100306.0
007      
ta
008      
221017s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1186/s12859-022-04957-8 $2 doi
035    __
$a (PubMed)36167495
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ryšavý, Petr $u Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic. petr.rysavy@fel.cvut.cz
245    10
$a circGPA: circRNA functional annotation based on probability-generating functions / $c P. Ryšavý, J. Kléma, MD. Merkerová
520    9_
$a Recent research has already shown that circular RNAs (circRNAs) are functional in gene expression regulation and potentially related to diseases. Due to their stability, circRNAs can also be used as biomarkers for diagnosis. However, the function of most circRNAs remains unknown, and it is expensive and time-consuming to discover it through biological experiments. In this paper, we predict circRNA annotations from the knowledge of their interaction with miRNAs and subsequent miRNA-mRNA interactions. First, we construct an interaction network for a target circRNA and secondly spread the information from the network nodes with the known function to the root circRNA node. This idea itself is not new; our main contribution lies in proposing an efficient and exact deterministic procedure based on the principle of probability-generating functions to calculate the p-value of association test between a circRNA and an annotation term. We show that our publicly available algorithm is both more effective and efficient than the commonly used Monte-Carlo sampling approach that may suffer from difficult quantification of sampling convergence and subsequent sampling inefficiency. We experimentally demonstrate that the new approach is two orders of magnitude faster than the Monte-Carlo sampling, which makes summary annotation of large circRNA files feasible; this includes their reannotation after periodical interaction network updates, for example. We provide a summary annotation of a current circRNA database as one of our outputs. The proposed algorithm could be generalized towards other types of RNA in way that is straightforward.
650    _2
$a biologické markery $7 D015415
650    _2
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a genové regulační sítě $7 D053263
650    12
$a mikro RNA $x genetika $x metabolismus $7 D035683
650    _2
$a pravděpodobnost $7 D011336
650    12
$a kruhová RNA $7 D000079962
650    _2
$a messenger RNA $x genetika $x metabolismus $7 D012333
655    _2
$a časopisecké články $7 D016428
700    1_
$a Kléma, Jiří $u Department of Computer Science, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
700    1_
$a Merkerová, Michaela Dostálová $u Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
773    0_
$w MED00008167 $t BMC bioinformatics $x 1471-2105 $g Roč. 23, č. 1 (2022), s. 392
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36167495 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031100304 $b ABA008
999    __
$a ok $b bmc $g 1854200 $s 1175631
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 23 $c 1 $d 392 $e 20220927 $i 1471-2105 $m BMC bioinformatics $n BMC Bioinformatics $x MED00008167
GRA    __
$a 20-19162S $p Grantová Agentura České Republiky
GRA    __
$a 20-19162S $p Grantová Agentura České Republiky
GRA    __
$a 20-19162S $p Grantová Agentura České Republiky
GRA    __
$a CZ.02.1.01/0.0/0.0/16_019/0000765 $p European Commission
GRA    __
$a CZ.02.1.01/0.0/0.0/16_019/0000765 $p European Commission
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...