Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Different classes of genomic inserts contribute to human antibody diversity

M. Lebedin, M. Foglierini, S. Khorkova, C. Vázquez García, C. Ratswohl, AN. Davydov, MA. Turchaninova, C. Daubenberger, DM. Chudakov, A. Lanzavecchia, K. de la Rosa

. 2022 ; 119 (36) : e2205470119. [pub] 20220829

Language English Country United States

Document type Journal Article, Research Support, Non-U.S. Gov't

E-resources Online Full text

NLK Free Medical Journals from 1915 to 6 months ago
Freely Accessible Science Journals from 1915 to 6 months ago
PubMed Central from 1915 to 6 months ago
Europe PubMed Central from 1915 to 6 months ago
Open Access Digital Library from 1915-01-15
Open Access Digital Library from 1915-01-01

Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22024467
003      
CZ-PrNML
005      
20221031101022.0
007      
ta
008      
221017s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.2205470119 $2 doi
035    __
$a (PubMed)36037353
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Lebedin, Mikhail $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany $1 https://orcid.org/0000000238777195
245    10
$a Different classes of genomic inserts contribute to human antibody diversity / $c M. Lebedin, M. Foglierini, S. Khorkova, C. Vázquez García, C. Ratswohl, AN. Davydov, MA. Turchaninova, C. Daubenberger, DM. Chudakov, A. Lanzavecchia, K. de la Rosa
520    9_
$a Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.
650    _2
$a protilátky protozoální $x genetika $7 D000913
650    12
$a rozmanitost protilátek $7 D000916
650    _2
$a CD antigeny $x imunologie $7 D015703
650    12
$a B-lymfocyty $x imunologie $7 D001402
650    12
$a geny pro imunoglobuliny $7 D005803
650    _2
$a genomika $7 D023281
650    _2
$a lidé $7 D006801
650    _2
$a lehké řetězce imunoglobulinů $x genetika $7 D007147
650    _2
$a imunoglobulinový receptor leukocytů B1 $x imunologie $7 D000075362
650    _2
$a inzerční mutageneze $7 D016254
650    _2
$a Plasmodium falciparum $7 D010963
650    _2
$a receptory antigenů T-buněk $x genetika $7 D011948
650    _2
$a receptory imunologické $x imunologie $7 D011971
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Foglierini, Mathilde $u Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Francesco Chiesa 5, 6500 Bellinzona, Switzerland $u Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
700    1_
$a Khorkova, Svetlana $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation $1 https://orcid.org/0000000278732290
700    1_
$a Vázquez García, Clara $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany $1 https://orcid.org/0000000345837616
700    1_
$a Ratswohl, Christoph $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany $1 https://orcid.org/0000000154130730
700    1_
$a Davydov, Alexey N $u Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic
700    1_
$a Turchaninova, Maria A $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation $1 https://orcid.org/0000000288740286
700    1_
$a Daubenberger, Claudia $u Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland $1 https://orcid.org/0000000171360642
700    1_
$a Chudakov, Dmitriy M $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation $u Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic $1 https://orcid.org/000000030430790X
700    1_
$a Lanzavecchia, Antonio $u Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Francesco Chiesa 5, 6500 Bellinzona, Switzerland
700    1_
$a de la Rosa, Kathrin $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany $u Berlin Institute of Health at Charité, 10117 Berlin, Germany $1 https://orcid.org/0000000348093157
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 119, č. 36 (2022), s. e2205470119
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36037353 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031101019 $b ABA008
999    __
$a ok $b bmc $g 1854273 $s 1175757
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 119 $c 36 $d e2205470119 $e 20220829 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20221017

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...