-
Something wrong with this record ?
Different classes of genomic inserts contribute to human antibody diversity
M. Lebedin, M. Foglierini, S. Khorkova, C. Vázquez García, C. Ratswohl, AN. Davydov, MA. Turchaninova, C. Daubenberger, DM. Chudakov, A. Lanzavecchia, K. de la Rosa
Language English Country United States
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 1915 to 6 months ago
Freely Accessible Science Journals
from 1915 to 6 months ago
PubMed Central
from 1915 to 6 months ago
Europe PubMed Central
from 1915 to 6 months ago
Open Access Digital Library
from 1915-01-15
Open Access Digital Library
from 1915-01-01
- MeSH
- B-Lymphocytes * immunology MeSH
- Antigens, CD immunology MeSH
- Genomics MeSH
- Genes, Immunoglobulin * MeSH
- Leukocyte Immunoglobulin-like Receptor B1 immunology MeSH
- Mutagenesis, Insertional MeSH
- Immunoglobulin Light Chains genetics MeSH
- Humans MeSH
- Plasmodium falciparum MeSH
- Antibodies, Protozoan genetics MeSH
- Receptors, Antigen, T-Cell genetics MeSH
- Receptors, Immunologic immunology MeSH
- Antibody Diversity * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.
Berlin Institute of Health at Charité 10117 Berlin Germany
Central European Institute of Technology Masaryk University 601 77 Brno Czech Republic
Department of Biology Chemistry and Pharmacy Free University of Berlin 14195 Berlin Germany
Max Delbrück Center for Molecular Medicine in the Helmholtz Association 13125 Berlin Germany
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024467
- 003
- CZ-PrNML
- 005
- 20221031101022.0
- 007
- ta
- 008
- 221017s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1073/pnas.2205470119 $2 doi
- 035 __
- $a (PubMed)36037353
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Lebedin, Mikhail $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany $1 https://orcid.org/0000000238777195
- 245 10
- $a Different classes of genomic inserts contribute to human antibody diversity / $c M. Lebedin, M. Foglierini, S. Khorkova, C. Vázquez García, C. Ratswohl, AN. Davydov, MA. Turchaninova, C. Daubenberger, DM. Chudakov, A. Lanzavecchia, K. de la Rosa
- 520 9_
- $a Recombination of antibody genes in B cells can involve distant genomic loci and contribute a foreign antigen-binding element to form hybrid antibodies with broad reactivity for Plasmodium falciparum. So far, antibodies containing the extracellular domain of the LAIR1 and LILRB1 receptors represent unique examples of cross-chromosomal antibody diversification. Here, we devise a technique to profile non-VDJ elements from distant genes in antibody transcripts. Independent of the preexposure of donors to malaria parasites, non-VDJ inserts were detected in 80% of individuals at frequencies of 1 in 104 to 105 B cells. We detected insertions in heavy, but not in light chain or T cell receptor transcripts. We classify the insertions into four types depending on the insert origin and destination: 1) mitochondrial and 2) nuclear DNA inserts integrated at VDJ junctions; 3) inserts originating from telomere proximal genes; and 4) fragile sites incorporated between J-to-constant junctions. The latter class of inserts was exclusively found in memory and in in vitro activated B cells, while all other classes were already detected in naïve B cells. More than 10% of inserts preserved the reading frame, including transcripts with signs of antigen-driven affinity maturation. Collectively, our study unravels a mechanism of antibody diversification that is layered on the classical V(D)J and switch recombination.
- 650 _2
- $a protilátky protozoální $x genetika $7 D000913
- 650 12
- $a rozmanitost protilátek $7 D000916
- 650 _2
- $a CD antigeny $x imunologie $7 D015703
- 650 12
- $a B-lymfocyty $x imunologie $7 D001402
- 650 12
- $a geny pro imunoglobuliny $7 D005803
- 650 _2
- $a genomika $7 D023281
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a lehké řetězce imunoglobulinů $x genetika $7 D007147
- 650 _2
- $a imunoglobulinový receptor leukocytů B1 $x imunologie $7 D000075362
- 650 _2
- $a inzerční mutageneze $7 D016254
- 650 _2
- $a Plasmodium falciparum $7 D010963
- 650 _2
- $a receptory antigenů T-buněk $x genetika $7 D011948
- 650 _2
- $a receptory imunologické $x imunologie $7 D011971
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Foglierini, Mathilde $u Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Francesco Chiesa 5, 6500 Bellinzona, Switzerland $u Service of Immunology and Allergy, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
- 700 1_
- $a Khorkova, Svetlana $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation $1 https://orcid.org/0000000278732290
- 700 1_
- $a Vázquez García, Clara $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany $1 https://orcid.org/0000000345837616
- 700 1_
- $a Ratswohl, Christoph $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Department of Biology, Chemistry and Pharmacy, Free University of Berlin, 14195 Berlin, Germany $1 https://orcid.org/0000000154130730
- 700 1_
- $a Davydov, Alexey N $u Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic
- 700 1_
- $a Turchaninova, Maria A $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation $1 https://orcid.org/0000000288740286
- 700 1_
- $a Daubenberger, Claudia $u Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland $1 https://orcid.org/0000000171360642
- 700 1_
- $a Chudakov, Dmitriy M $u Department of Genomics of Adaptive Immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russian Federation $u Department of Molecular Technologies, Pirogov Russian National Research Medical University, 117997 Moscow, Russian Federation $u Central European Institute of Technology, Masaryk University, 601 77 Brno, Czech Republic $1 https://orcid.org/000000030430790X
- 700 1_
- $a Lanzavecchia, Antonio $u Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Francesco Chiesa 5, 6500 Bellinzona, Switzerland
- 700 1_
- $a de la Rosa, Kathrin $u Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany $u Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany $u Berlin Institute of Health at Charité, 10117 Berlin, Germany $1 https://orcid.org/0000000348093157
- 773 0_
- $w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 119, č. 36 (2022), s. e2205470119
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36037353 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031101019 $b ABA008
- 999 __
- $a ok $b bmc $g 1854273 $s 1175757
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 119 $c 36 $d e2205470119 $e 20220829 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
- LZP __
- $a Pubmed-20221017