-
Something wrong with this record ?
Confidence intervals for point-of-stabilization of content uniformity
Z. Hlávka, P. Míchal, M. Otava
Language English Country England, Great Britain
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
35347839
DOI
10.1002/pst.2207
Knihovny.cz E-resources
- MeSH
- Confidence Intervals MeSH
- Pharmaceutical Preparations MeSH
- Humans MeSH
- Nonlinear Dynamics * MeSH
- Models, Statistical * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Within the framework of continuous pharmaceutical manufacturing, we are interested in statistical modeling of the initial behavior of the production line. Assuming a gradually changing sequence of a suitable product quality characteristic (e.g., the content uniformity), we estimate the so-called point-of-stabilization (PoSt) and construct corresponding confidence regions based on appropriate asymptotic distributions and bootstrap. We investigate linear, quadratic, and nonlinear gradual change models both in homoscedastic and heteroscedastic setup. We propose a new nonlinear Emax gradual change model and show that it is applicable even if the true model is linear. Asymptotic distribution of the PoSt estimator is known only in a homoscedastic linear and quadratic model and, therefore, bootstrap approximations are used to construct one-sided PoSt confidence intervals.
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22024667
- 003
- CZ-PrNML
- 005
- 20221031100127.0
- 007
- ta
- 008
- 221017s2022 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1002/pst.2207 $2 doi
- 035 __
- $a (PubMed)35347839
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Hlávka, Zdeněk $u Department of Statistics, Faculty of Mathematics and Physics, Charles University, Czech Republic
- 245 10
- $a Confidence intervals for point-of-stabilization of content uniformity / $c Z. Hlávka, P. Míchal, M. Otava
- 520 9_
- $a Within the framework of continuous pharmaceutical manufacturing, we are interested in statistical modeling of the initial behavior of the production line. Assuming a gradually changing sequence of a suitable product quality characteristic (e.g., the content uniformity), we estimate the so-called point-of-stabilization (PoSt) and construct corresponding confidence regions based on appropriate asymptotic distributions and bootstrap. We investigate linear, quadratic, and nonlinear gradual change models both in homoscedastic and heteroscedastic setup. We propose a new nonlinear Emax gradual change model and show that it is applicable even if the true model is linear. Asymptotic distribution of the PoSt estimator is known only in a homoscedastic linear and quadratic model and, therefore, bootstrap approximations are used to construct one-sided PoSt confidence intervals.
- 650 _2
- $a interval spolehlivosti $7 D016001
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a statistické modely $7 D015233
- 650 12
- $a nelineární dynamika $7 D017711
- 650 _2
- $a léčivé přípravky $7 D004364
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Míchal, Petr $u Department of Statistics, Faculty of Mathematics and Physics, Charles University, Czech Republic
- 700 1_
- $a Otava, Martin $u Quantitative Sciences, Janssen-Cilag s.r.o., Janssen Pharmaceutical Companies of Johnson & Johnson, Czech Republic $1 https://orcid.org/000000026150913X
- 773 0_
- $w MED00209775 $t Pharmaceutical statistics $x 1539-1612 $g Roč. 21, č. 5 (2022), s. 944-959
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/35347839 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031100125 $b ABA008
- 999 __
- $a ok $b bmc $g 1854416 $s 1175957
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 21 $c 5 $d 944-959 $e 20220328 $i 1539-1612 $m Pharmaceutical statistics $n Pharm Stat $x MED00209775
- LZP __
- $a Pubmed-20221017