• Je něco špatně v tomto záznamu ?

Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models

JF. Aubry, O. Bates, C. Boehm, K. Butts Pauly, D. Christensen, C. Cueto, P. Gélat, L. Guasch, J. Jaros, Y. Jing, R. Jones, N. Li, P. Marty, H. Montanaro, E. Neufeld, S. Pichardo, G. Pinton, A. Pulkkinen, A. Stanziola, A. Thielscher, B. Treeby, E....

. 2022 ; 152 (2) : 1003. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/bmc22025048

Grantová podpora
R01 EB028316 NIBIB NIH HHS - United States
R37 CA224141 NCI NIH HHS - United States
R01 EB013433 NIBIB NIH HHS - United States
R01 EB025205 NIBIB NIH HHS - United States
T32 EB009653 NIBIB NIH HHS - United States
R01 CA227687 NCI NIH HHS - United States
R01 CA172787 NCI NIH HHS - United States

Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.

Centre of Excellence IT4Innovations Faculty of Information Technology Brno University of Technology Bozetechova 2 Brno 612 00 Czech Republic

Department of Applied Physics University of Eastern Finland 70211 Kuopio Finland

Department of Bioengineering Imperial College London Exhibition Road London SW7 2AZ United Kingdom

Department of Biomedical Engineering and Department of Electrical and Computer Engineering University of Utah Salt Lake City Utah 84112 USA

Department of Electrical Engineering Stanford University Stanford California 94305 USA

Department of Medical Physics and Biomedical Engineering University College London Gower Street London WC1E 6BT United Kingdom

Department of Radiology Stanford University Stanford California 94305 USA

Department of Surgical Biotechnology Division of Surgery and Interventional Science University College London London NW3 2PF United Kingdom

Earth Science and Engineering Department Imperial College London London United Kingdom

Foundation for Research on Information Technologies in Society Zurich Switzerland

Graduate Program in Acoustics The Pennsylvania State University University Park Pennsylvania 16802 USA

Institute for Mathematical and Computational Engineering School of Engineering and Faculty of Mathematics Pontificia Universidad Católica de Chile Santiago Chile

Institute of Geophysics Swiss Federal Institute of Technology Zürich Sonneggstrasse 5 8092 Zürich Switzerland

Joint Department of Biomedical Engineering University of North Carolina at Chapel Hill Chapel Hill North Carolina 27599 USA and North Carolina State University Raleigh North Carolina 27695 USA

Physics for Medicine Paris National Institute of Health and Medical Research UMR 8063 Paris France

Radiology and Clinical Neurosciences Departments Cumming School of Medicine University of Calgary Calgary Alberta Canada

Technical University of Denmark Kongens Lyngby Denmark

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22025048
003      
CZ-PrNML
005      
20221031101320.0
007      
ta
008      
221017s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1121/10.0013426 $2 doi
035    __
$a (PubMed)36050189
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Aubry, Jean-Francois $u Physics for Medicine Paris, National Institute of Health and Medical Research (INSERM) U1273, ESPCI Paris, Paris Sciences and Lettres University, French National Centre for Scientific Research (CNRS) UMR 8063, Paris, France
245    10
$a Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models / $c JF. Aubry, O. Bates, C. Boehm, K. Butts Pauly, D. Christensen, C. Cueto, P. Gélat, L. Guasch, J. Jaros, Y. Jing, R. Jones, N. Li, P. Marty, H. Montanaro, E. Neufeld, S. Pichardo, G. Pinton, A. Pulkkinen, A. Stanziola, A. Thielscher, B. Treeby, E. van 't Wout
520    9_
$a Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
650    12
$a benchmarking $7 D019985
650    _2
$a počítačová simulace $7 D003198
650    _2
$a lebka $x diagnostické zobrazování $7 D012886
650    12
$a měniče $7 D014159
650    _2
$a ultrasonografie $x metody $7 D014463
655    _2
$a časopisecké články $7 D016428
655    _2
$a Research Support, N.I.H., Extramural $7 D052061
655    _2
$a práce podpořená grantem $7 D013485
655    _2
$a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
700    1_
$a Bates, Oscar $u Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
700    1_
$a Boehm, Christian $u Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
700    1_
$a Butts Pauly, Kim $u Department of Radiology, Stanford University, Stanford, California 94305, USA
700    1_
$a Christensen, Douglas $u Department of Biomedical Engineering and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
700    1_
$a Cueto, Carlos $u Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
700    1_
$a Gélat, Pierre $u Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2PF, United Kingdom
700    1_
$a Guasch, Lluis $u Earth Science and Engineering Department, Imperial College London, London, United Kingdom
700    1_
$a Jaros, Jiri $u Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno 612 00, Czech Republic $1 https://orcid.org/0000000200878804
700    1_
$a Jing, Yun $u Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
700    1_
$a Jones, Rebecca $u Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
700    1_
$a Li, Ningrui $u Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
700    1_
$a Marty, Patrick $u Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
700    1_
$a Montanaro, Hazael $u Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
700    1_
$a Neufeld, Esra $u Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
700    1_
$a Pichardo, Samuel $u Radiology and Clinical Neurosciences Departments, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
700    1_
$a Pinton, Gianmarco $u Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
700    1_
$a Pulkkinen, Aki $u Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
700    1_
$a Stanziola, Antonio $u Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
700    1_
$a Thielscher, Axel $u Technical University of Denmark, Kongens Lyngby, Denmark
700    1_
$a Treeby, Bradley $u Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom $1 https://orcid.org/000000017782011X
700    1_
$a van 't Wout, Elwin $u Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
773    0_
$w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 152, č. 2 (2022), s. 1003
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36050189 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20221017 $b ABA008
991    __
$a 20221031101318 $b ABA008
999    __
$a ok $b bmc $g 1854648 $s 1176338
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2022 $b 152 $c 2 $d 1003 $e - $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
GRA    __
$a R01 EB028316 $p NIBIB NIH HHS $2 United States
GRA    __
$a R37 CA224141 $p NCI NIH HHS $2 United States
GRA    __
$a R01 EB013433 $p NIBIB NIH HHS $2 United States
GRA    __
$a R01 EB025205 $p NIBIB NIH HHS $2 United States
GRA    __
$a T32 EB009653 $p NIBIB NIH HHS $2 United States
GRA    __
$a R01 CA227687 $p NCI NIH HHS $2 United States
GRA    __
$a R01 CA172787 $p NCI NIH HHS $2 United States
LZP    __
$a Pubmed-20221017

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...