-
Je něco špatně v tomto záznamu ?
Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models
JF. Aubry, O. Bates, C. Boehm, K. Butts Pauly, D. Christensen, C. Cueto, P. Gélat, L. Guasch, J. Jaros, Y. Jing, R. Jones, N. Li, P. Marty, H. Montanaro, E. Neufeld, S. Pichardo, G. Pinton, A. Pulkkinen, A. Stanziola, A. Thielscher, B. Treeby, E....
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
R01 EB028316
NIBIB NIH HHS - United States
R37 CA224141
NCI NIH HHS - United States
R01 EB013433
NIBIB NIH HHS - United States
R01 EB025205
NIBIB NIH HHS - United States
T32 EB009653
NIBIB NIH HHS - United States
R01 CA227687
NCI NIH HHS - United States
R01 CA172787
NCI NIH HHS - United States
PubMed
36050189
DOI
10.1121/10.0013426
Knihovny.cz E-zdroje
- MeSH
- benchmarking * MeSH
- lebka diagnostické zobrazování MeSH
- měniče * MeSH
- počítačová simulace MeSH
- ultrasonografie metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
Department of Applied Physics University of Eastern Finland 70211 Kuopio Finland
Department of Bioengineering Imperial College London Exhibition Road London SW7 2AZ United Kingdom
Department of Electrical Engineering Stanford University Stanford California 94305 USA
Department of Radiology Stanford University Stanford California 94305 USA
Earth Science and Engineering Department Imperial College London London United Kingdom
Foundation for Research on Information Technologies in Society Zurich Switzerland
Physics for Medicine Paris National Institute of Health and Medical Research UMR 8063 Paris France
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22025048
- 003
- CZ-PrNML
- 005
- 20221031101320.0
- 007
- ta
- 008
- 221017s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1121/10.0013426 $2 doi
- 035 __
- $a (PubMed)36050189
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Aubry, Jean-Francois $u Physics for Medicine Paris, National Institute of Health and Medical Research (INSERM) U1273, ESPCI Paris, Paris Sciences and Lettres University, French National Centre for Scientific Research (CNRS) UMR 8063, Paris, France
- 245 10
- $a Benchmark problems for transcranial ultrasound simulation: Intercomparison of compressional wave models / $c JF. Aubry, O. Bates, C. Boehm, K. Butts Pauly, D. Christensen, C. Cueto, P. Gélat, L. Guasch, J. Jaros, Y. Jing, R. Jones, N. Li, P. Marty, H. Montanaro, E. Neufeld, S. Pichardo, G. Pinton, A. Pulkkinen, A. Stanziola, A. Thielscher, B. Treeby, E. van 't Wout
- 520 9_
- $a Computational models of acoustic wave propagation are frequently used in transcranial ultrasound therapy, for example, to calculate the intracranial pressure field or to calculate phase delays to correct for skull distortions. To allow intercomparison between the different modeling tools and techniques used by the community, an international working group was convened to formulate a set of numerical benchmarks. Here, these benchmarks are presented, along with intercomparison results. Nine different benchmarks of increasing geometric complexity are defined. These include a single-layer planar bone immersed in water, a multi-layer bone, and a whole skull. Two transducer configurations are considered (a focused bowl and a plane piston operating at 500 kHz), giving a total of 18 permutations of the benchmarks. Eleven different modeling tools are used to compute the benchmark results. The models span a wide range of numerical techniques, including the finite-difference time-domain method, angular spectrum method, pseudospectral method, boundary-element method, and spectral-element method. Good agreement is found between the models, particularly for the position, size, and magnitude of the acoustic focus within the skull. When comparing results for each model with every other model in a cross-comparison, the median values for each benchmark for the difference in focal pressure and position are less than 10% and 1 mm, respectively. The benchmark definitions, model results, and intercomparison codes are freely available to facilitate further comparisons.
- 650 12
- $a benchmarking $7 D019985
- 650 _2
- $a počítačová simulace $7 D003198
- 650 _2
- $a lebka $x diagnostické zobrazování $7 D012886
- 650 12
- $a měniče $7 D014159
- 650 _2
- $a ultrasonografie $x metody $7 D014463
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a Research Support, N.I.H., Extramural $7 D052061
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Bates, Oscar $u Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- 700 1_
- $a Boehm, Christian $u Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
- 700 1_
- $a Butts Pauly, Kim $u Department of Radiology, Stanford University, Stanford, California 94305, USA
- 700 1_
- $a Christensen, Douglas $u Department of Biomedical Engineering and Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112, USA
- 700 1_
- $a Cueto, Carlos $u Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
- 700 1_
- $a Gélat, Pierre $u Department of Surgical Biotechnology, Division of Surgery and Interventional Science, University College London, London NW3 2PF, United Kingdom
- 700 1_
- $a Guasch, Lluis $u Earth Science and Engineering Department, Imperial College London, London, United Kingdom
- 700 1_
- $a Jaros, Jiri $u Centre of Excellence IT4Innovations, Faculty of Information Technology, Brno University of Technology, Bozetechova 2, Brno 612 00, Czech Republic $1 https://orcid.org/0000000200878804
- 700 1_
- $a Jing, Yun $u Graduate Program in Acoustics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
- 700 1_
- $a Jones, Rebecca $u Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
- 700 1_
- $a Li, Ningrui $u Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
- 700 1_
- $a Marty, Patrick $u Institute of Geophysics, Swiss Federal Institute of Technology (ETH) Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland
- 700 1_
- $a Montanaro, Hazael $u Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- 700 1_
- $a Neufeld, Esra $u Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- 700 1_
- $a Pichardo, Samuel $u Radiology and Clinical Neurosciences Departments, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- 700 1_
- $a Pinton, Gianmarco $u Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA and North Carolina State University, Raleigh, North Carolina 27695, USA
- 700 1_
- $a Pulkkinen, Aki $u Department of Applied Physics, University of Eastern Finland, 70211 Kuopio, Finland
- 700 1_
- $a Stanziola, Antonio $u Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom
- 700 1_
- $a Thielscher, Axel $u Technical University of Denmark, Kongens Lyngby, Denmark
- 700 1_
- $a Treeby, Bradley $u Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London WC1E 6BT, United Kingdom $1 https://orcid.org/000000017782011X
- 700 1_
- $a van 't Wout, Elwin $u Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica de Chile, Santiago, Chile
- 773 0_
- $w MED00002959 $t The Journal of the Acoustical Society of America $x 1520-8524 $g Roč. 152, č. 2 (2022), s. 1003
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36050189 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20221017 $b ABA008
- 991 __
- $a 20221031101318 $b ABA008
- 999 __
- $a ok $b bmc $g 1854648 $s 1176338
- BAS __
- $a 3
- BAS __
- $a PreBMC
- BMC __
- $a 2022 $b 152 $c 2 $d 1003 $e - $i 1520-8524 $m The Journal of the Acoustical Society of America $n J Acoust Soc Am $x MED00002959
- GRA __
- $a R01 EB028316 $p NIBIB NIH HHS $2 United States
- GRA __
- $a R37 CA224141 $p NCI NIH HHS $2 United States
- GRA __
- $a R01 EB013433 $p NIBIB NIH HHS $2 United States
- GRA __
- $a R01 EB025205 $p NIBIB NIH HHS $2 United States
- GRA __
- $a T32 EB009653 $p NIBIB NIH HHS $2 United States
- GRA __
- $a R01 CA227687 $p NCI NIH HHS $2 United States
- GRA __
- $a R01 CA172787 $p NCI NIH HHS $2 United States
- LZP __
- $a Pubmed-20221017