• Je něco špatně v tomto záznamu ?

Answering Clinical Questions Using Machine Learning: Should We Look at Diastolic Blood Pressure When Tailoring Blood Pressure Control

M. Siński, P. Berka, J. Lewandowski, P. Sobieraj, K. Piechocki, B. Paleczny, A. Siennicka

. 2022 ; 11 (24) : . [pub] 20221215

Status neindexováno Jazyk angličtina Země Švýcarsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc22031023

Background: The guidelines recommend intensive blood pressure control. Randomized trials have focused on the relevance of the systolic blood pressure (SBP) lowering, leaving the safety of the diastolic blood pressure (DBP) reduction unresolved. There are data available which show that low DBP should not stop clinicians from achieving SBP targets; however, registries and analyses of randomized trials present conflicting results. The purpose of the study was to apply machine learning (ML) algorithms to determine, whether DBP is an important risk factor to predict stroke, heart failure (HF), myocardial infarction (MI), and primary outcome in the SPRINT trial database. Methods: ML experiments were performed using decision tree, random forest, k-nearest neighbor, naive Bayesian, multi-layer perceptron, and logistic regression algorithms, including and excluding DBP as the risk factor in an unselected and selected (DBP < 70 mmHg) study population. Results: Including DBP as the risk factor did not change the performance of the machine learning models evaluated using accuracy, AUC, mean, and weighted F-measure, and was not required to make proper predictions of stroke, MI, HF, and primary outcome. Conclusions: Analyses of the SPRINT trial data using ML algorithms imply that DBP should not be treated as an independent risk factor when intensifying blood pressure control.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22031023
003      
CZ-PrNML
005      
20230127131019.0
007      
ta
008      
230119s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/jcm11247454 $2 doi
035    __
$a (PubMed)36556072
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Siński, Maciej $u Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland $1 https://orcid.org/0000000185489762
245    10
$a Answering Clinical Questions Using Machine Learning: Should We Look at Diastolic Blood Pressure When Tailoring Blood Pressure Control / $c M. Siński, P. Berka, J. Lewandowski, P. Sobieraj, K. Piechocki, B. Paleczny, A. Siennicka
520    9_
$a Background: The guidelines recommend intensive blood pressure control. Randomized trials have focused on the relevance of the systolic blood pressure (SBP) lowering, leaving the safety of the diastolic blood pressure (DBP) reduction unresolved. There are data available which show that low DBP should not stop clinicians from achieving SBP targets; however, registries and analyses of randomized trials present conflicting results. The purpose of the study was to apply machine learning (ML) algorithms to determine, whether DBP is an important risk factor to predict stroke, heart failure (HF), myocardial infarction (MI), and primary outcome in the SPRINT trial database. Methods: ML experiments were performed using decision tree, random forest, k-nearest neighbor, naive Bayesian, multi-layer perceptron, and logistic regression algorithms, including and excluding DBP as the risk factor in an unselected and selected (DBP &lt; 70 mmHg) study population. Results: Including DBP as the risk factor did not change the performance of the machine learning models evaluated using accuracy, AUC, mean, and weighted F-measure, and was not required to make proper predictions of stroke, MI, HF, and primary outcome. Conclusions: Analyses of the SPRINT trial data using ML algorithms imply that DBP should not be treated as an independent risk factor when intensifying blood pressure control.
590    __
$a NEINDEXOVÁNO
655    _2
$a časopisecké články $7 D016428
700    1_
$a Berka, Petr $u Department of Information and Knowledge Engineering, Faculty of Informatics and Statistics, Prague University of Economics and Business, W. Churchill Sq. 4, 120 00 Prague, Czech Republic $1 https://orcid.org/0000000304642257
700    1_
$a Lewandowski, Jacek $u Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland $1 https://orcid.org/0000000337808073
700    1_
$a Sobieraj, Piotr $u Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland $1 https://orcid.org/0000000306628678
700    1_
$a Piechocki, Kacper $u Department of Internal Medicine, Hypertension and Vascular Diseases, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland $1 https://orcid.org/0000000324172096
700    1_
$a Paleczny, Bartłomiej $u Department of Physiology and Pathophysiology, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland
700    1_
$a Siennicka, Agnieszka $u Department of Physiology and Pathophysiology, Wroclaw Medical University, Chałubińskiego 10, 50-368 Wroclaw, Poland $1 https://orcid.org/0000000309885821
773    0_
$w MED00195462 $t Journal of clinical medicine $x 2077-0383 $g Roč. 11, č. 24 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36556072 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230119 $b ABA008
991    __
$a 20230127131010 $b ABA008
999    __
$a ok $b bmc $g 1889341 $s 1182356
BAS    __
$a 3
BAS    __
$a PreBMC-PubMed-not-MEDLINE
BMC    __
$a 2022 $b 11 $c 24 $e 20221215 $i 2077-0383 $m Journal of clinical medicine $n J Clin Med $x MED00195462
LZP    __
$a Pubmed-20230119

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...