-
Something wrong with this record ?
miRBind: A Deep Learning Method for miRNA Binding Classification
E. Klimentová, V. Hejret, J. Krčmář, K. Grešová, IC. Giassa, P. Alexiou
Language English Country Switzerland
Document type Journal Article, Research Support, Non-U.S. Gov't
NLK
Free Medical Journals
from 2010
PubMed Central
from 2010
Europe PubMed Central
from 2010
ProQuest Central
from 2010-03-01
Open Access Digital Library
from 2010-01-01
Open Access Digital Library
from 2010-01-01
ROAD: Directory of Open Access Scholarly Resources
from 2010
PubMed
36553590
DOI
10.3390/genes13122323
Knihovny.cz E-resources
- MeSH
- Algorithms MeSH
- Argonaute Proteins genetics metabolism MeSH
- Deep Learning * MeSH
- MicroRNAs * genetics metabolism MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
Central European Institute of Technology Masaryk University 60177 Brno Czech Republic
Faculty of Informatics Masaryk University 60200 Brno Czech Republic
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22032213
- 003
- CZ-PrNML
- 005
- 20230131151805.0
- 007
- ta
- 008
- 230120s2022 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/genes13122323 $2 doi
- 035 __
- $a (PubMed)36553590
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Klimentová, Eva $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic
- 245 10
- $a miRBind: A Deep Learning Method for miRNA Binding Classification / $c E. Klimentová, V. Hejret, J. Krčmář, K. Grešová, IC. Giassa, P. Alexiou
- 520 9_
- $a The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
- 650 12
- $a deep learning $7 D000077321
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 650 12
- $a mikro RNA $x genetika $x metabolismus $7 D035683
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a Argonaut proteiny $x genetika $x metabolismus $7 D060565
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Hejret, Václav $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic $u Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 61137 Brno, Czech Republic
- 700 1_
- $a Krčmář, Ján $u Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
- 700 1_
- $a Grešová, Katarína $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic $u Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 61137 Brno, Czech Republic $1 https://orcid.org/0000000211360832
- 700 1_
- $a Giassa, Ilektra-Chara $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic
- 700 1_
- $a Alexiou, Panagiotis $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic
- 773 0_
- $w MED00174652 $t Genes $x 2073-4425 $g Roč. 13, č. 12 (2022)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36553590 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131151801 $b ABA008
- 999 __
- $a ok $b bmc $g 1891146 $s 1183548
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 13 $c 12 $e 20221209 $i 2073-4425 $m Genes $n Genes $x MED00174652
- LZP __
- $a Pubmed-20230120