Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

miRBind: A Deep Learning Method for miRNA Binding Classification

E. Klimentová, V. Hejret, J. Krčmář, K. Grešová, IC. Giassa, P. Alexiou

. 2022 ; 13 (12) : . [pub] 20221209

Language English Country Switzerland

Document type Journal Article, Research Support, Non-U.S. Gov't

The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032213
003      
CZ-PrNML
005      
20230131151805.0
007      
ta
008      
230120s2022 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/genes13122323 $2 doi
035    __
$a (PubMed)36553590
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Klimentová, Eva $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic
245    10
$a miRBind: A Deep Learning Method for miRNA Binding Classification / $c E. Klimentová, V. Hejret, J. Krčmář, K. Grešová, IC. Giassa, P. Alexiou
520    9_
$a The binding of microRNAs (miRNAs) to their target sites is a complex process, mediated by the Argonaute (Ago) family of proteins. The prediction of miRNA:target site binding is an important first step for any miRNA target prediction algorithm. To date, the potential for miRNA:target site binding is evaluated using either co-folding free energy measures or heuristic approaches, based on the identification of binding 'seeds', i.e., continuous stretches of binding corresponding to specific parts of the miRNA. The limitations of both these families of methods have produced generations of miRNA target prediction algorithms that are primarily focused on 'canonical' seed targets, even though unbiased experimental methods have shown that only approximately half of in vivo miRNA targets are 'canonical'. Herein, we present miRBind, a deep learning method and web server that can be used to accurately predict the potential of miRNA:target site binding. We trained our method using seed-agnostic experimental data and show that our method outperforms both seed-based approaches and co-fold free energy approaches. The full code for the development of miRBind and a freely accessible web server are freely available.
650    12
$a deep learning $7 D000077321
650    _2
$a výpočetní biologie $x metody $7 D019295
650    12
$a mikro RNA $x genetika $x metabolismus $7 D035683
650    _2
$a algoritmy $7 D000465
650    _2
$a Argonaut proteiny $x genetika $x metabolismus $7 D060565
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Hejret, Václav $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic $u Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 61137 Brno, Czech Republic
700    1_
$a Krčmář, Ján $u Faculty of Informatics, Masaryk University, 60200 Brno, Czech Republic
700    1_
$a Grešová, Katarína $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic $u Faculty of Science, National Centre for Biomolecular Research, Masaryk University, 61137 Brno, Czech Republic $1 https://orcid.org/0000000211360832
700    1_
$a Giassa, Ilektra-Chara $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic
700    1_
$a Alexiou, Panagiotis $u Central European Institute of Technology (CEITEC), Masaryk University, 60177 Brno, Czech Republic
773    0_
$w MED00174652 $t Genes $x 2073-4425 $g Roč. 13, č. 12 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36553590 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151801 $b ABA008
999    __
$a ok $b bmc $g 1891146 $s 1183548
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 13 $c 12 $e 20221209 $i 2073-4425 $m Genes $n Genes $x MED00174652
LZP    __
$a Pubmed-20230120

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...