• Je něco špatně v tomto záznamu ?

Wireless optoelectronic devices for vagus nerve stimulation in mice

MJ. Donahue, MS. Ejneby, M. Jakešová, AS. Caravaca, G. Andersson, I. Sahalianov, V. Đerek, H. Hult, PS. Olofsson, ED. Głowacki

. 2022 ; 19 (6) : . [pub] 20221209

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032217

Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032217
003      
CZ-PrNML
005      
20230131151404.0
007      
ta
008      
230120s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1088/1741-2552/aca1e3 $2 doi
035    __
$a (PubMed)36356313
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Donahue, Mary J $u Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden
245    10
$a Wireless optoelectronic devices for vagus nerve stimulation in mice / $c MJ. Donahue, MS. Ejneby, M. Jakešová, AS. Caravaca, G. Andersson, I. Sahalianov, V. Đerek, H. Hult, PS. Olofsson, ED. Głowacki
520    9_
$a Objective.Vagus nerve stimulation (VNS) is a promising approach for the treatment of a wide variety of debilitating conditions, including autoimmune diseases and intractable epilepsy. Much remains to be learned about the molecular mechanisms involved in vagus nerve regulation of organ function. Despite an abundance of well-characterized rodent models of common chronic diseases, currently available technologies are rarely suitable for the required long-term experiments in freely moving animals, particularly experimental mice. Due to challenging anatomical limitations, many relevant experiments require miniaturized, less invasive, and wireless devices for precise stimulation of the vagus nerve and other peripheral nerves of interest. Our objective is to outline possible solutions to this problem by using nongenetic light-based stimulation.Approach.We describe how to design and benchmark new microstimulation devices that are based on transcutaneous photovoltaic stimulation. The approach is to use wired multielectrode cuffs to test different stimulation patterns, and then build photovoltaic stimulators to generate the most optimal patterns. We validate stimulation through heart rate analysis.Main results.A range of different stimulation geometries are explored with large differences in performance. Two types of photovoltaic devices are fabricated to deliver stimulation: photocapacitors and photovoltaic flags. The former is simple and more compact, but has limited efficiency. The photovoltaic flag approach is more elaborate, but highly efficient. Both can be used for wireless actuation of the vagus nerve using light impulses.Significance.These approaches can enable studies in small animals that were previously challenging, such as long-termin vivostudies for mapping functional vagus nerve innervation. This new knowledge may have potential to support clinical translation of VNS for treatment of select inflammatory and neurologic diseases.
650    _2
$a zvířata $7 D000818
650    _2
$a myši $7 D051379
650    12
$a vagová stimulace $x přístrojové vybavení $7 D055536
650    12
$a bezdrátová technologie $7 D059015
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Ejneby, Malin Silverå $u Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden $u Wallenberg Centre for Molecular Medicine, Linköping University, SE-58185 Linköping, Sweden
700    1_
$a Jakešová, Marie $u Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic $1 https://orcid.org/0000000287022303
700    1_
$a Caravaca, April S $u Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden $u Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden
700    1_
$a Andersson, Gabriel $u Department of Mathematics, KTH, 11428 Stockholm, Sweden
700    1_
$a Sahalianov, Ihor $u Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic $1 https://orcid.org/000000020609471X
700    1_
$a Đerek, Vedran $u Department of Physics, Faculty of Science, University of Zagreb, Bijenička c. 32, 10000 Zagreb, Croatia
700    1_
$a Hult, Henrik $u Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden $u Department of Mathematics, KTH, 11428 Stockholm, Sweden
700    1_
$a Olofsson, Peder S $u Laboratory of Immunobiology, Center for Bioelectronic Medicine, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden $u Stockholm Center for Bioelectronic Medicine, MedTechLabs, Karolinska University Hospital, Solna, Sweden $u Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, United States of America $1 https://orcid.org/0000000334735948
700    1_
$a Głowacki, Eric Daniel $u Laboratory of Organic Electronics, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden $u Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic $1 https://orcid.org/0000000202808017
773    0_
$w MED00188777 $t Journal of neural engineering $x 1741-2552 $g Roč. 19, č. 6 (2022)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36356313 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151400 $b ABA008
999    __
$a ok $b bmc $g 1891148 $s 1183552
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 19 $c 6 $e 20221209 $i 1741-2552 $m Journal of neural engineering $n J Neural Eng $x MED00188777
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...