-
Je něco špatně v tomto záznamu ?
Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes
RS. Randall, C. Jourdain, A. Nowicka, K. Kaduchová, M. Kubová, MA. Ayoub, V. Schubert, C. Tatout, I. Colas, . Kalyanikrishna, S. Desset, S. Mermet, A. Boulaflous-Stevens, I. Kubalová, T. Mandáková, S. Heckmann, MA. Lysak, M. Panatta, R. Santoro,...
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články, práce podpořená grantem
NLK
Directory of Open Access Journals
od 2018
Free Medical Journals
od 2010 do Před 1 rokem
PubMed Central
od 2010
Europe PubMed Central
od 2010 do Před 1 rokem
Taylor & Francis Open Access
od 2010-01-01
Medline Complete (EBSCOhost)
od 2011-11-01
ROAD: Directory of Open Access Scholarly Resources
od 2010
- MeSH
- buněčné jádro * MeSH
- chromatin * MeSH
- fluorescenční mikroskopie MeSH
- hybridizace in situ fluorescenční MeSH
- lidé MeSH
- průběh práce MeSH
- zelené fluorescenční proteiny MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.
Centre of the Region Haná for Biotechnological and Agricultural Research Olomouc Czech Republic
Department of Molecular Mechanisms of Disease DMMD University of Zürich Zürich Switzerland
Institute of Biology Freie Universität Berlin Germany
Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben D 06466 Seeland Germany
Service and Support for Science IT Universität Zürich Zürich Switzerland
The James Hutton Institute Errol Road Invergowrie DD2 5DA Scotland UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc22032311
- 003
- CZ-PrNML
- 005
- 20230131151649.0
- 007
- ta
- 008
- 230120s2022 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1080/19491034.2022.2144013 $2 doi
- 035 __
- $a (PubMed)36447428
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Randall, Ricardo S $u Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland $1 https://orcid.org/000000022778519X
- 245 10
- $a Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes / $c RS. Randall, C. Jourdain, A. Nowicka, K. Kaduchová, M. Kubová, MA. Ayoub, V. Schubert, C. Tatout, I. Colas, . Kalyanikrishna, S. Desset, S. Mermet, A. Boulaflous-Stevens, I. Kubalová, T. Mandáková, S. Heckmann, MA. Lysak, M. Panatta, R. Santoro, D. Schubert, A. Pecinka, D. Routh, C. Baroux
- 520 9_
- $a Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.
- 650 _2
- $a lidé $7 D006801
- 650 _2
- $a průběh práce $7 D057188
- 650 _2
- $a hybridizace in situ fluorescenční $7 D017404
- 650 12
- $a buněčné jádro $7 D002467
- 650 12
- $a chromatin $7 D002843
- 650 _2
- $a fluorescenční mikroskopie $7 D008856
- 650 _2
- $a zelené fluorescenční proteiny $7 D049452
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Jourdain, Claire $u Institute of Biology, Freie Universität Berlin, Germany $1 https://orcid.org/000000023568580X
- 700 1_
- $a Nowicka, Anna $u Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic $1 https://orcid.org/0000000257623482
- 700 1_
- $a Kaduchová, Kateřina $u Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic $1 https://orcid.org/0000000192595942
- 700 1_
- $a Kubová, Michaela $u Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000334747324
- 700 1_
- $a Ayoub, Mohammad A $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000193713277
- 700 1_
- $a Schubert, Veit $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000230720485
- 700 1_
- $a Tatout, Christophe $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000152152338
- 700 1_
- $a Colas, Isabelle $u The James Hutton Institute, Errol Road, Invergowrie, DD2 5DA, Scotland UK $1 https://orcid.org/0000000169809906
- 700 1_
- $a Kalyanikrishna, $u Institute of Biology, Freie Universität Berlin, Germany $1 https://orcid.org/000000028026246X
- 700 1_
- $a Desset, Sophie $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000248974977
- 700 1_
- $a Mermet, Sarah $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000168393224
- 700 1_
- $a Boulaflous-Stevens, Aurélia $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000313782569
- 700 1_
- $a Kubalová, Ivona $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000256739715
- 700 1_
- $a Mandáková, Terezie $u Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000164850563
- 700 1_
- $a Heckmann, Stefan $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000201898428
- 700 1_
- $a Lysak, Martin A $u Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000303184194
- 700 1_
- $a Panatta, Martina $u Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland $1 https://orcid.org/0000000281808380
- 700 1_
- $a Santoro, Raffaella $u Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland $1 https://orcid.org/0000000198942896
- 700 1_
- $a Schubert, Daniel $u Institute of Biology, Freie Universität Berlin, Germany $1 https://orcid.org/0000000323900733
- 700 1_
- $a Pecinka, Ales $u Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic $1 https://orcid.org/0000000192771766
- 700 1_
- $a Routh, Devin $u Service and Support for Science IT (S3IT), Universität Zürich, Zürich, Switzerland
- 700 1_
- $a Baroux, Célia $u Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland $1 https://orcid.org/0000000163072229
- 773 0_
- $w MED00180459 $t Nucleus (Austin, Tex.) $x 1949-1042 $g Roč. 13, č. 1 (2022), s. 277-299
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/36447428 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y p $z 0
- 990 __
- $a 20230120 $b ABA008
- 991 __
- $a 20230131151645 $b ABA008
- 999 __
- $a ok $b bmc $g 1891203 $s 1183646
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2022 $b 13 $c 1 $d 277-299 $e - $i 1949-1042 $m Nucleus $n Nucleus $x MED00180459
- LZP __
- $a Pubmed-20230120