• Je něco špatně v tomto záznamu ?

Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes

RS. Randall, C. Jourdain, A. Nowicka, K. Kaduchová, M. Kubová, MA. Ayoub, V. Schubert, C. Tatout, I. Colas, . Kalyanikrishna, S. Desset, S. Mermet, A. Boulaflous-Stevens, I. Kubalová, T. Mandáková, S. Heckmann, MA. Lysak, M. Panatta, R. Santoro,...

. 2022 ; 13 (1) : 277-299. [pub] -

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc22032311

Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032311
003      
CZ-PrNML
005      
20230131151649.0
007      
ta
008      
230120s2022 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1080/19491034.2022.2144013 $2 doi
035    __
$a (PubMed)36447428
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Randall, Ricardo S $u Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland $1 https://orcid.org/000000022778519X
245    10
$a Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes / $c RS. Randall, C. Jourdain, A. Nowicka, K. Kaduchová, M. Kubová, MA. Ayoub, V. Schubert, C. Tatout, I. Colas, . Kalyanikrishna, S. Desset, S. Mermet, A. Boulaflous-Stevens, I. Kubalová, T. Mandáková, S. Heckmann, MA. Lysak, M. Panatta, R. Santoro, D. Schubert, A. Pecinka, D. Routh, C. Baroux
520    9_
$a Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.
650    _2
$a lidé $7 D006801
650    _2
$a průběh práce $7 D057188
650    _2
$a hybridizace in situ fluorescenční $7 D017404
650    12
$a buněčné jádro $7 D002467
650    12
$a chromatin $7 D002843
650    _2
$a fluorescenční mikroskopie $7 D008856
650    _2
$a zelené fluorescenční proteiny $7 D049452
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Jourdain, Claire $u Institute of Biology, Freie Universität Berlin, Germany $1 https://orcid.org/000000023568580X
700    1_
$a Nowicka, Anna $u Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic $1 https://orcid.org/0000000257623482
700    1_
$a Kaduchová, Kateřina $u Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic $1 https://orcid.org/0000000192595942
700    1_
$a Kubová, Michaela $u Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000334747324
700    1_
$a Ayoub, Mohammad A $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000193713277
700    1_
$a Schubert, Veit $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000230720485
700    1_
$a Tatout, Christophe $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000152152338
700    1_
$a Colas, Isabelle $u The James Hutton Institute, Errol Road, Invergowrie, DD2 5DA, Scotland UK $1 https://orcid.org/0000000169809906
700    1_
$a Kalyanikrishna, $u Institute of Biology, Freie Universität Berlin, Germany $1 https://orcid.org/000000028026246X
700    1_
$a Desset, Sophie $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000248974977
700    1_
$a Mermet, Sarah $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000168393224
700    1_
$a Boulaflous-Stevens, Aurélia $u Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001 Clermont-Ferrand, France $1 https://orcid.org/0000000313782569
700    1_
$a Kubalová, Ivona $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000256739715
700    1_
$a Mandáková, Terezie $u Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000164850563
700    1_
$a Heckmann, Stefan $u Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466 Seeland, Germany $1 https://orcid.org/0000000201898428
700    1_
$a Lysak, Martin A $u Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic $1 https://orcid.org/0000000303184194
700    1_
$a Panatta, Martina $u Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland $1 https://orcid.org/0000000281808380
700    1_
$a Santoro, Raffaella $u Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland $1 https://orcid.org/0000000198942896
700    1_
$a Schubert, Daniel $u Institute of Biology, Freie Universität Berlin, Germany $1 https://orcid.org/0000000323900733
700    1_
$a Pecinka, Ales $u Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic $1 https://orcid.org/0000000192771766
700    1_
$a Routh, Devin $u Service and Support for Science IT (S3IT), Universität Zürich, Zürich, Switzerland
700    1_
$a Baroux, Célia $u Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland $1 https://orcid.org/0000000163072229
773    0_
$w MED00180459 $t Nucleus (Austin, Tex.) $x 1949-1042 $g Roč. 13, č. 1 (2022), s. 277-299
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36447428 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131151645 $b ABA008
999    __
$a ok $b bmc $g 1891203 $s 1183646
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 13 $c 1 $d 277-299 $e - $i 1949-1042 $m Nucleus $n Nucleus $x MED00180459
LZP    __
$a Pubmed-20230120

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace