Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Cysteine restriction-specific effects of sulfur amino acid restriction on lipid metabolism

SN. Nichenametla, DAL. Mattocks, D. Cooke, V. Midya, VL. Malloy, W. Mansilla, B. Øvrebø, C. Turner, NE. Bastani, J. Sokolová, M. Pavlíková, JP. Richie, AK. Shoveller, H. Refsum, T. Olsen, KJ. Vinknes, V. Kožich, GP. Ables

. 2022 ; 21 (12) : e13739. [pub] 20221119

Language English Country England, Great Britain

Document type Journal Article

Grant support
P30ES023515 NIEHS NIH HHS - United States
P30ES023515 NIEHS NIH HHS - United States

Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc22032318
003      
CZ-PrNML
005      
20230131150948.0
007      
ta
008      
230120s2022 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1111/acel.13739 $2 doi
035    __
$a (PubMed)36403077
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Nichenametla, Sailendra N $u Animal Science Laboratory, Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York, USA $1 https://orcid.org/0000000259693572
245    10
$a Cysteine restriction-specific effects of sulfur amino acid restriction on lipid metabolism / $c SN. Nichenametla, DAL. Mattocks, D. Cooke, V. Midya, VL. Malloy, W. Mansilla, B. Øvrebø, C. Turner, NE. Bastani, J. Sokolová, M. Pavlíková, JP. Richie, AK. Shoveller, H. Refsum, T. Olsen, KJ. Vinknes, V. Kožich, GP. Ables
520    9_
$a Decreasing the dietary intake of methionine exerts robust anti-adiposity effects in rodents but modest effects in humans. Since cysteine can be synthesized from methionine, animal diets are formulated by decreasing methionine and eliminating cysteine. Such diets exert both methionine restriction (MR) and cysteine restriction (CR), that is, sulfur amino acid restriction (SAAR). Contrarily, SAAR diets formulated for human consumption included cysteine, and thus might have exerted only MR. Epidemiological studies positively correlate body adiposity with plasma cysteine but not methionine, suggesting that CR, but not MR, is responsible for the anti-adiposity effects of SAAR. Whether this is true, and, if so, the underlying mechanisms are unknown. Using methionine- and cysteine-titrated diets, we demonstrate that the anti-adiposity effects of SAAR are due to CR. Data indicate that CR increases serinogenesis (serine biosynthesis from non-glucose substrates) by diverting substrates from glyceroneogenesis, which is essential for fatty acid reesterification and triglyceride synthesis. Molecular data suggest that CR depletes hepatic glutathione and induces Nrf2 and its downstream targets Phgdh (the serine biosynthetic enzyme) and Pepck-M. In mice, the magnitude of SAAR-induced changes in molecular markers depended on dietary fat concentration (60% fat >10% fat), sex (males > females), and age-at-onset (young > adult). Our findings are translationally relevant as we found negative and positive correlations of plasma serine and cysteine, respectively, with triglycerides and metabolic syndrome criteria in a cross-sectional epidemiological study. Controlled feeding of low-SAA, high-polyunsaturated fatty acid diets increased plasma serine in humans. Serinogenesis might be a target for treating hypertriglyceridemia.
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a myši $7 D051379
650    _2
$a lidé $7 D006801
650    _2
$a zvířata $7 D000818
650    12
$a cystein $x metabolismus $7 D003545
650    _2
$a metabolismus lipidů $7 D050356
650    _2
$a průřezové studie $7 D003430
650    12
$a aminokyseliny sírové $x metabolismus $7 D000603
650    _2
$a methionin $x metabolismus $7 D008715
650    _2
$a obezita $x metabolismus $7 D009765
650    _2
$a serin $x metabolismus $7 D012694
655    _2
$a časopisecké články $7 D016428
700    1_
$a Mattocks, Dwight A L $u Animal Science Laboratory, Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York, USA
700    1_
$a Cooke, Diana $u Animal Science Laboratory, Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York, USA
700    1_
$a Midya, Vishal $u Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
700    1_
$a Malloy, Virginia L $u Animal Science Laboratory, Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York, USA
700    1_
$a Mansilla, Wilfredo $u Department of Animal Bioscience, University of Guelph, Guelph, Ontario, Canada
700    1_
$a Øvrebø, Bente $u Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
700    1_
$a Turner, Cheryl $u Department of Pharmacology, University of Oxford, Oxford, UK
700    1_
$a Bastani, Nasser E $u Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
700    1_
$a Sokolová, Jitka $u Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Charles University-First Faculty of Medicine, Prague, Czech Republic
700    1_
$a Pavlíková, Markéta $u Department of Probability and Mathematical Statistics, Charles University - Faculty of Mathematics and Physics, Prague, Czech Republic
700    1_
$a Richie, John P $u Departments of Public Health Sciences and Pharmacology, Penn State University College of Medicine, Hershey, Pennsylvania, USA
700    1_
$a Shoveller, Anna K $u Department of Animal Bioscience, University of Guelph, Guelph, Ontario, Canada
700    1_
$a Refsum, Helga $u Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway $u Department of Pharmacology, University of Oxford, Oxford, UK
700    1_
$a Olsen, Thomas $u Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
700    1_
$a Vinknes, Kathrine J $u Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
700    1_
$a Kožich, Viktor $u Department of Pediatrics and Inherited Metabolic Disorders, General University Hospital in Prague, Charles University-First Faculty of Medicine, Prague, Czech Republic
700    1_
$a Ables, Gene P $u Animal Science Laboratory, Orentreich Foundation for the Advancement of Science, Cold Spring-on-Hudson, New York, USA
773    0_
$w MED00007638 $t Aging cell $x 1474-9726 $g Roč. 21, č. 12 (2022), s. e13739
856    41
$u https://pubmed.ncbi.nlm.nih.gov/36403077 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y p $z 0
990    __
$a 20230120 $b ABA008
991    __
$a 20230131150944 $b ABA008
999    __
$a ok $b bmc $g 1891209 $s 1183653
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2022 $b 21 $c 12 $d e13739 $e 20221119 $i 1474-9726 $m Aging cell $n Aging cell $x MED00007638
GRA    __
$a P30ES023515 $p NIEHS NIH HHS $2 United States
GRA    __
$a P30ES023515 $p NIEHS NIH HHS $2 United States
LZP    __
$a Pubmed-20230120

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...